176 research outputs found

    Infections, Toxic Chemicals and Dietary Peptides Binding to Lymphocyte Receptors and Tissue Enzymes are Major Instigators of Autoimmunity in Autism

    Full text link
    Similar to many complex autoimmune diseases, genetic and environmental factors including diet, infection and xenobiotics play a critical role in the development of autism. In this study, we postulated that infectious agent antigens such as streptokinase, dietary peptides (gliadin and casein) and ethyl mercury (xenobiotic) bind to different lymphocyte receptors and tissue enzyme (DPP IV or CD26). We assessed this hypothesis first by measuring IgG, IgM and IgA antibodies against CD26, CD69, streptokinase (SK), gliadin and casein peptides and against ethyl mercury bound to human serum albumin in patients with autism. A significant percentage of children with autism developed anti-SK, anti-gliadin and casein peptides and anti-ethyl mercury antibodies, concomitant with the appearance of anti-CD26 and anti-CD69 autoantibodies. These antibodies are synthesized as a result of SK, gliadin, casein and ethyl mercury binding to CD26 and CD69, indicating that they are specific. Immune absorption demonstrated that only specific antigens, like CD26, were capable of significantly reducing serum anti-CD26 levels. However, for direct demonstration of SK, gliadin, casein and ethyl mercury to CD26 or CD69, microtiter wells were coated with CD26 or CD69 alone or in combination with SK, gliadin, casein or ethyl mercury and then reacted with enzyme labeled rabbit anti-CD26 or anti-CD69. Adding these molecules to CD26 or CD69 resulted in 28–86 % inhibition of CD26 or CD69 binding to anti-CD26 or anti-CD69 antibodies. The highest % binding of these antigens or peptides to CD26 or CD69 was attributed to SK and the lowest to casein peptides. We, therefore, propose that bacterial antigens (SK), dietary peptides (gliadin, casein) and Thimerosal (ethyl mercury) in individuals with pre-disposing HLA molecules, bind to CD26 or CD69 and induce antibodies against these molecules. In conclusion, this study is apparently the first to demonstrate that dietary peptides, bacterial toxins and xenobiotics bind to lymphocyte receptors and/or tissue enzymes, resulting in autoimmune reaction in children with autism. </jats:p

    Neural network controller for active demand side management with PV energy in the residential sector

    Get PDF
    In this paper, we describe the development of a control system for Demand-Side Management in the residential sector with Distributed Generation. The electrical system under study incorporates local PV energy generation, an electricity storage system, connection to the grid and a home automation system. The distributed control system is composed of two modules: a scheduler and a coordinator, both implemented with neural networks. The control system enhances the local energy performance, scheduling the tasks demanded by the user and maximizing the use of local generation

    Polymorphism at High Molecular Weight Glutenin Subunits and Morphological Diversity of Aegilops geniculata Roth Collected in Algeria

    Get PDF
    A collection of 35 accessions of the tetraploid wild wheat Aegilops geniculata Roth (MM, UU) sampled in northern Algeria was evaluated for morphological and biochemical variability. Morphological and ecological analyses based on morphological traits and bioclimatic parameters, respectively, were assessed using principal component analysis (PCA). Accessions were differentiated by width characters, namely spike’s width, and a weak relationship between morphological traits and ecological parameters was found. Polymorphism of high molecular weight (HMW) glutenin subunits was carried on by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Among accessions analyzed, 27 alleles were identified at the two loci Glu-M1 and Glu-U1: resulting in twenty-nine patterns and a nomenclature was proposed. Two alleles at the Glu-U1 locus expressed a new subunit with a slightly slower mobility than subunit 8. These results provide new information regarding the genetic variability of HMW glutenin subunits, as well as their usefulness in cultivated wheat quality improvement

    Improvement of attention span and reaction time with hyperbaric oxygen treatment in patients with toxic injury due to mold exposure

    Get PDF
    It is, by now, well established that mold toxins (mycotoxins) can cause significant adverse health effects. In this study, 15 subjects who developed an attention deficit disorder (ADD) and slowing of reaction time at the time of exposure to mold toxins were identified. Deficits in attention span and reaction time were documented not only by taking a careful history, but also by performing a Test of Variables of Attention (TOVA). The TOVA test provides an objective measure of these two variables. It was found that mold-exposed subjects show statistically significant decreases in attention span and significant increases in reaction time to stimuli compared to controls. After ten sessions of hyperbaric oxygen treatment (HBOT), a statistically significant improvement was seen in both measures. This preliminary study suggests promising outcomes in treating mold-exposed patients with hyperbaric oxygen

    Prediction of acute multiple sclerosis relapses by transcription levels of peripheral blood cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to predict the spatial frequency of relapses in multiple sclerosis (MS) would enable physicians to decide when to intervene more aggressively and to plan clinical trials more accurately.</p> <p>Methods</p> <p>In the current study our objective was to determine if subsets of genes can predict the time to the next acute relapse in patients with MS. Data-mining and predictive modeling tools were utilized to analyze a gene-expression dataset of 94 non-treated patients; 62 patients with definite MS and 32 patients with clinically isolated syndrome (CIS). The dataset included the expression levels of 10,594 genes and annotated sequences corresponding to 22,215 gene-transcripts that appear in the microarray.</p> <p>Results</p> <p>We designed a two stage predictor. The first stage predictor was based on the expression level of 10 genes, and predicted the time to next relapse with a resolution of 500 days (error rate 0.079, p < 0.001). If the predicted relapse was to occur in less than 500 days, a second stage predictor based on an additional different set of 9 genes was used to give a more accurate estimation of the time till the next relapse (in resolution of 50 days). The error rate of the second stage predictor was 2.3 fold lower than the error rate of random predictions (error rate = 0.35, p < 0.001). The predictors were further evaluated and found effective both for untreated MS patients and for MS patients that subsequently received immunomodulatory treatments after the initial testing (the error rate of the first level predictor was < 0.18 with p < 0.001 for all the patient groups).</p> <p>Conclusion</p> <p>We conclude that gene expression analysis is a valuable tool that can be used in clinical practice to predict future MS disease activity. Similar approach can be also useful for dealing with other autoimmune diseases that characterized by relapsing-remitting nature.</p

    Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both resveratrol and vitamin C (ascorbic acid) are frequently used in complementary and alternative medicine. However, little is known about the underlying mechanisms for potential health benefits of resveratrol and its interactions with ascorbic acid.</p> <p>Methods</p> <p>The antioxidant enzymes heme oxygenase-1 and paraoxonase-1 were analysed for their mRNA and protein levels in HUH7 liver cells treated with 10 and 25 μmol/l resveratrol in the absence and presence of 100 and 1000 μmol/l ascorbic acid. Additionally the transactivation of the transcription factor Nrf2 and paraoxonase-1 were determined by reporter gene assays.</p> <p>Results</p> <p>Here, we demonstrate that resveratrol induces the antioxidant enzymes heme oxygenase-1 and paraoxonase-1 in cultured hepatocytes. Heme oxygenase-1 induction by resveratrol was accompanied by an increase in Nrf2 transactivation. Resveratrol mediated Nrf2 transactivation as well as heme oxygenase-1 induction were partly antagonized by 1000 μmol/l ascorbic acid.</p> <p>Conclusions</p> <p>Unlike heme oxygenase-1 (which is highly regulated by Nrf2) paraoxonase-1 (which exhibits fewer ARE/Nrf2 binding sites in its promoter) induction by resveratrol was not counteracted by ascorbic acid. Addition of resveratrol to the cell culture medium produced relatively low levels of hydrogen peroxide which may be a positive hormetic redox-signal for Nrf2 dependent gene expression thereby driving heme oxygenase-1 induction. However, high concentrations of ascorbic acid manifold increased hydrogen peroxide production in the cell culture medium which may be a stress signal thereby disrupting the Nrf2 signalling pathway.</p

    A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100B is a calcium-binding protein that is produced primarily by astrocytes. Increased serum S100B protein levels reflect neurological damage. Autoimmunity may have a role in the pathogenesis of autism in some patients. Autoantibodies may cross the blood-brain barrier and combine with brain tissue antigens, forming immune complexes and resulting in neurological damage. We are the first to investigate the relationship between serum levels of S100B protein, a marker of neuronal damage, and antiribosomal P protein antibodies in autistic children.</p> <p>Methods</p> <p>Serum S100B protein and antiribosomal P antibodies were measured in 64 autistic children in comparison to 46 matched healthy children.</p> <p>Results</p> <p>Autistic children had significantly higher serum S100B protein levels than healthy controls (<it>P </it>< 0.001). Children with severe autism had significantly higher serum S100B protein than patients with mild to moderate autism (<it>P </it>= 0.01). Increased serum levels of antiribosomal P antibodies were found in 40.6% of autistic children. There were no significant correlations between serum levels of S100B protein and antiribosomal P antibodies (<it>P </it>= 0.29).</p> <p>Conclusions</p> <p>S100B protein levels were elevated in autistic children and significantly correlated to autistic severity. This may indicate the presence of an underlying neuropathological condition in autistic patients. Antiribosomal P antibodies may not be a possible contributing factor to the elevated serum levels of S100B protein in some autistic children. However, further research is warranted to investigate the possible link between serum S100B protein levels and other autoantibodies, which are possible indicators of autoimmunity to central nervous system in autism.</p

    Effects of maternal immune activation on gene expression patterns in the fetal brain

    Get PDF
    We are exploring the mechanisms underlying how maternal infection increases the risk for schizophrenia and autism in the offspring. Several mouse models of maternal immune activation (MIA) were used to examine the immediate effects of MIA induced by influenza virus, poly(I:C) and interleukin IL-6 on the fetal brain transcriptome. Our results indicate that all three MIA treatments lead to strong and common gene expression changes in the embryonic brain. Most notably, there is an acute and transient upregulation of the α, β and γ crystallin gene family. Furthermore, levels of crystallin gene expression are correlated with the severity of MIA as assessed by placental weight. The overall gene expression changes suggest that the response to MIA is a neuroprotective attempt by the developing brain to counteract environmental stress, but at a cost of disrupting typical neuronal differentiation and axonal growth. We propose that this cascade of events might parallel the mechanisms by which environmental insults contribute to the risk of neurodevelopmental disorders such as schizophrenia and autism
    corecore