39,390 research outputs found

    Education in the Space Age

    Get PDF
    University role in space programs - need for educatio

    Study of the effects of atmospheric turbulence on laser communications systems, volume 1 Interim report

    Get PDF
    High altitude aircraft test for visible laser communication and analysis of errors in optical communications experiment due to flight path inaccuracie

    Decision-Making and Statistical Standards

    Get PDF
    NASA speech on use of statistical methods in governmental decision makin

    Self-Avoiding Modes of Motion in a Deterministic Lorentz Lattice Gas

    Full text link
    We study the motion of a particle on the two-dimensional honeycomb lattice, whose sites are occupied by either flipping rotators or flipping mirrors, which scatter the particle according to a deterministic rule. For both types of scatterers we find a new type of motion that has not been observed in a Lorentz Lattice gas, where the particle's trajectory is a self-avoiding walk between returns to its initial position. We show that this behavior is a consequence of the deterministic scattering rule and the particular class of initial scatterer configurations we consider. Since self-avoiding walks are one of the main tools used to model the growth of crystals and polymers, the particle's motion in this class of systems is potentially important for the study of these processes.Comment: 32 pages, 18 figure

    A preliminary analysis of a three impulse technique for transearth injection from highly inclined orbits

    Get PDF
    Preliminary analysis of three impulse technique for transearth injection from highly inclined orbit

    Threshold detection in an on-off binary communications channel with atmospheric scintillation

    Get PDF
    The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-emperical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. Bit error probabilities for non-optimum threshold detection system were also investigated

    Measurement of the Radius of Neutron Stars with High S/N Quiescent Low-mass X-ray Binaries in Globular Clusters

    Full text link
    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter -- present in the core of NSs -- is best described by "normal matter" equations of state (EoSs). Such EoSs predict that the radii of NSs, Rns, are quasi-constant (within measurement errors, of ~10%) for astrophysically relevant masses (Mns > 0.5 Msun). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single Rns value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov-Chain Monte-Carlo approach, we produce the marginalized posterior distribution for Rns, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions,we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, Rns=9.1(+1.3)(-1.5) km (90%-confidence). Such a value is consistent with low-res equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.Comment: Accepted to Apj. 31 pages, 17 figures, 8 table

    Address by James E. Webb at the University of Delaware Commencement, Jun. 9, 1963

    Get PDF
    Motivation for space exploration - international leadership as the representative of capitalis

    The primordial deuterium abundance at z = 2.504 from a high signal-to-noise spectrum of Q1009+2956

    Get PDF
    The spectrum of the zem=2.63z_{\rm em} = 2.63 quasar Q1009+2956 has been observed extensively on the Keck telescope. The Lyman limit absorption system zabs=2.504z_{\rm abs} = 2.504 was previously used to measure D/H by Burles & Tytler using a spectrum with signal to noise approximately 60 per pixel in the continuum near Ly {\alpha} at zabs=2.504z_{\rm abs} = 2.504. The larger dataset now available combines to form an exceptionally high signal to noise spectrum, around 147 per pixel. Several heavy element absorption lines are detected in this LLS, providing strong constraints on the kinematic structure. We explore a suite of absorption system models and find that the deuterium feature is likely to be contaminated by weak interloping Ly {\alpha} absorption from a low column density H I cloud, reducing the expected D/H precision. We find D/H = 2.480.35+0.41×1052.48^{+0.41}_{-0.35}\times10^{-5} for this system. Combining this new measurement with others from the literature and applying the method of Least Trimmed Squares to a statistical sample of 15 D/H measurements results in a "reliable" sample of 13 values. This sample yields a primordial deuterium abundance of (D/H)p=(2.545±0.025)×105_{\rm p} = (2.545 \pm 0.025)\times10^{-5}. The corresponding mean baryonic density of the Universe is Ωbh2=0.02174±0.00025\Omega_{\rm b}h^2 = 0.02174\pm0.00025. The quasar absorption data is of the same precision as, and marginally inconsistent with, the 2015 CMB Planck (TT+lowP+lensing) measurement, Ωbh2=0.02226±0.00023\Omega_{\rm b}h^2 = 0.02226\pm0.00023. Further quasar and more precise nuclear data are required to establish whether this is a random fluctuation.Comment: accepted by MNRAS, 18 pages, 12 figures, 6 table
    corecore