40,150 research outputs found
Non-global Structure of the O({\alpha}_s^2) Dijet Soft Function
High energy scattering processes involving jets generically involve matrix
elements of light- like Wilson lines, known as soft functions. These describe
the structure of soft contributions to observables and encode color and
kinematic correlations between jets. We compute the dijet soft function to
O({\alpha}_s^2) as a function of the two jet invariant masses, focusing on
terms not determined by its renormalization group evolution that have a
non-separable dependence on these masses. Our results include non-global single
and double logarithms, and analytic results for the full set of non-logarithmic
contributions as well. Using a recent result for the thrust constant, we
present the complete O({\alpha}_s^2) soft function for dijet production in both
position and momentum space.Comment: 55 pages, 8 figures. v2: extended discussion of double logs in the
hard regime. v3: minor typos corrected, version published in JHEP. v4: typos
in Eq. (3.33), (3.39), (3.43) corrected; this does not affect the main
result, numerical results, or conclusion
Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: Functional and therapeutic implications
This article is made available through the Brunel Open Access Publishing Fund. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.CLU (clusterin) is a tumor suppressor gene that we have previously shown to be negatively modulated by the MYCN proto-oncogene, but the mechanism of repression was unclear. Here, we show that MYCN inhibits the expression of CLU by direct interaction with the non-canonical E box sequence CACGCG in the 5′-flanking region. Binding of MYCN to the CLU gene induces bivalent epigenetic marks and recruitment of repressive proteins such as histone deacetylases and Polycomb members. MYCN physically binds in vitro and in vivo to EZH2, a component of the Polycomb repressive complex 2, required to repress CLU. Notably, EZH2 interacts with the Myc box domain 3, a segment of MYC known to be essential for its transforming effects. The expression of CLU can be restored in MYCN-amplified cells by epigenetic drugs with therapeutic results. Importantly, the anticancer effects of the drugs are ablated if CLU expression is blunted by RNA interference. Our study implies that MYC tumorigenesis can be effectively antagonized by epigenetic drugs that interfere with the recruitment of chromatin modifiers at repressive E boxes of tumor suppressor genes such as CLU.SPARKS, The Neuroblastoma Society,
a Wellcome Trust grant (to A. S.), and the Italian Association for Cancer
Research
Direct photon production with effective field theory
The production of hard photons in hadronic collisions is studied using
Soft-Collinear Effective Theory (SCET). This is the first application of SCET
to a physical, observable cross section involving energetic partons in more
than two directions. A factorization formula is derived which involves a
non-trivial interplay of the angular dependence in the hard and soft functions,
both quark and gluon jet functions, and multiple partonic channels. The
relevant hard, jet and soft functions are computed to one loop and their
anomalous dimensions are determined to three loops. The final resummed
inclusive direct photon distribution is valid to next-to-next-to-leading
logarithmic order (NNLL), one order beyond previous work. The result is
improved by including non-logarithmic terms and photon isolation cuts through
matching, and compared to Tevatron data and to fixed order results at the
Tevatron and the LHC. The resummed cross section has a significantly smaller
theoretical uncertainty than the next-to-leading fixed-order result,
particularly at high transverse momentum.Comment: 42 pages, 9 figures; v2: references added, minor changes; v3: typos;
v4: typos, corrections in (16), (47), (72
A collective scattering system for measuring electron gyroscale fluctuations on the National Spherical Torus Experiment
A collective scattering system has been installed on the National Spherical Torus Experiment (NSTX) to measure electron gyroscale fluctuations in NSTX plasmas. The system measures fluctuations with k(perpendicular to)rho(e)less than or similar to 0.6 and k(perpendicular to)less than or similar to 20 cm(-1). Up to five distinct wavenumbers are measured simultaneously, and the large toroidal curvature of NSTX plasmas provides enhanced spatial localization. Steerable optics can position the scattering volume throughout the plasma from the magnetic axis to the outboard edge. Initial measurements indicate rich turbulent dynamics on the electron gyroscale. The system will be a valuable tool for investigating the connection between electron temperature gradient turbulence and electron thermal transport in NSTX plasmas.X1137sciescopu
Time and dose dependency of bone-sarcomas in patients injected with radium-224
The time course and dose dependency of the incidence of bone-sarcomas among 900 German patients treated with high doses of radium-224 is analysed in terms of a proportional hazards model with a log-normal dependency of time to tumor and a linear-quadratic dose relation. The deduced dose dependency agrees well with a previous analysis in terms of a non-parametric proportional hazards model, and confirms the temporal distribution which has been used in the Radioepidemiological Tables of NIH. However, the linear-quadratic dose-response model gives a risk estimate for low doses which is somewhat less than half that obtained under the assumption of linearity.
Dedicated to Prof. W. Jacobi on the occasion of his 60th birthday
Work performed under Euratom contracts BI6-D-083-D, BI6-F-111-D, U.S. Department of Energy contract DE-AC 02-76 EV-00119, the U.S. National Cancer Institut
Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas
A collective scattering system has measured electron gyroscale fluctuations in National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] H-mode plasmas to investigate electron temperature gradient (ETG) turbulence. Observations and results pertaining to fluctuation measurements in ETG-stable regimes, the toroidal field scaling of fluctuation amplitudes, the relation between fluctuation amplitudes and transport quantities, and fluctuation magnitudes and k-spectra are presented. Collectively, the measurements provide insight and guidance for understanding ETG turbulence and anomalous electron thermal transport. (C) 2009 American Institute of Physics. [doi:10.1063/1.3262530]X116sciescopu
Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing
Within the context of autonomous driving a model-based reinforcement learning
algorithm is proposed for the design of neural network-parameterized
controllers. Classical model-based control methods, which include sampling- and
lattice-based algorithms and model predictive control, suffer from the
trade-off between model complexity and computational burden required for the
online solution of expensive optimization or search problems at every short
sampling time. To circumvent this trade-off, a 2-step procedure is motivated:
first learning of a controller during offline training based on an arbitrarily
complicated mathematical system model, before online fast feedforward
evaluation of the trained controller. The contribution of this paper is the
proposition of a simple gradient-free and model-based algorithm for deep
reinforcement learning using task separation with hill climbing (TSHC). In
particular, (i) simultaneous training on separate deterministic tasks with the
purpose of encoding many motion primitives in a neural network, and (ii) the
employment of maximally sparse rewards in combination with virtual velocity
constraints (VVCs) in setpoint proximity are advocated.Comment: 10 pages, 6 figures, 1 tabl
Observations of Reduced Electron Gyroscale Fluctuations in National Spherical Torus Experiment H-Mode Plasmas with Large E X B Flow Shear
Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temperature gradient (ETG) turbulence. Large toroidal rotation in National Spherical Torus Experiment plasmas with neutral beam injection generates ExB flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the ExB flow shear rate exceeds ETG linear growth rates. The observations indicate that ExB flow shear can be an effective suppression mechanism for ETG turbulence.X1129sciescopu
Factorization and resummation of s-channel single top quark production
In this paper we study the factorization and resummation of s-channel single
top quark production in the Standard Model at both the Tevatron and the LHC. We
show that the production cross section in the threshold limit can be factorized
into a convolution of hard function, soft function and jet function via
soft-collinear-effective-theory (SCET), and resummation can be performed using
renormalization group equation in the momentum space resummation formalism. We
find that in general, the resummation effects enhance the Next-to-Leading-Order
(NLO) cross sections by about at both the Tevatron and the LHC, and
significantly reduce the factorization scale dependence of the total cross
section at the Tevatron, while at the LHC we find that the factorization scale
dependence has not been improved, compared with the NLO results.Comment: 29 pages, 7 figures; version published in JHE
Clinical characterization of thoracolumbar and lumbar intervertebral disk extrusions in English Cocker Spaniels
- …
