65 research outputs found

    Comment on "Ferromagnetic film on a superconducting substrate"

    Full text link
    A superconducting substrate is not able to shrink drastically domains in a ferromagnetic film, contrary to the prediction of Bulaevskii and Chudnovsky [Phys. Rev. B, 63, issue1 (2001)]. This is shown on the basis of the exact solution for the stripe domain structure.Comment: 8 pages, 1 figure, the version published in Phys. Rev.

    Domain structure of superconducting ferromagnets

    Full text link
    In superconducting ferromagnets the equilibrium domain structure is absent in the Meissner state, but appears in the spontaneous vortex phase (the mixed state in zero external magnetic field), though with a period, which can essentially exceed that in normal ferromagnets. Metastable domain walls are possible even in the Meissner state. The domain walls create magnetostatic fields near the sample surface, which can be used for experimental detection of domain walls.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let

    Iordanskii Force and the Gravitational Aharonov-Bohm effect for a Moving Vortex

    Full text link
    I discuss the scattering of phonons by a vortex moving with respect to a superfluid condensate. This allows us to test the compatibility of the scattering-theory derivation of the Iordanskii force with the galilean invariance of the underlying fluid dynamics. In order to obtain the correct result we must retain O(vs2)O(v_s^2) terms in the sound-wave equation, and this reinforces the interpretation, due to Volovik, of the Iordanskii force as an analogue of the gravitational Bohm-Aharonov effect.Comment: 20 pages, LaTe

    Dissipative dynamics of vortex arrays in anisotropic traps

    Full text link
    We discuss the dissipative dynamics of vortex arrays in trapped Bose-condensed gases and analyze the lifetime of the vortices as a function of trap anisotropy and the temperature. In particular, we distinguish the two regimes of the dissipative dynamics, depending on the relative strength of the mutual friction between the vortices and the thermal component, and the friction of the thermal particles on the trap anisotropy. We study the effects of heating of the thermal cloud by the escaping vortices on the dynamics of the system.Comment: RevTeX, 8 pages, 3 eps figure

    Smooth vortex precession in superfluid 4He

    Full text link
    We have measured a precessing superfluid vortex line, stretched from a wire to the wall of a cylindrical cell. By contrast to previous experiments with a similar geometry, the motion along the wall is smooth. The key difference is probably that our wire is substantially off center. We verify several numerical predictions about the motion, including an asymmetry in the precession signature, the behavior of pinning events, and the temperature dependence of the precession.Comment: 8 pages, 8 figure

    Phase diagram of turbulence in superfluid 3He-B

    Full text link
    In superfluid 3He-B mutual-friction damping of vortex-line motion decreases roughly exponentially with temperature. We record as a function of temperature and pressure the transition from regular vortex motion at high temperatures to turbulence at low temperatures. The measurements are performed with non-invasive NMR techniques, by injecting vortex loops into a long column in vortex-free rotation. The results display the phase diagram of turbulence at high flow velocities where the transition from regular to turbulent dynamics is velocity independent. At the three measured pressures 10.2, 29.0, and 34 bar, the transition is centered at 0.52--0.59Tc and has a narrow width of 0.06Tc while at zero pressure turbulence is not observed above 0.45Tc.Comment: To be published in J. Low Temp. Phys. (QFS2004 proceedings

    Transition to Superfluid Turbulence

    Full text link
    Turbulence in superfluids depends crucially on the dissipative damping in vortex motion. This is observed in the B phase of superfluid 3He where the dynamics of quantized vortices changes radically in character as a function of temperature. An abrupt transition to turbulence is the most peculiar consequence. As distinct from viscous hydrodynamics, this transition to turbulence is not governed by the velocity-dependent Reynolds number, but by a velocity-independent dimensionless parameter 1/q which depends only on the temperature-dependent mutual friction -- the dissipation which sets in when vortices move with respect to the normal excitations of the liquid. At large friction and small values of 1/q < 1 the dynamics is vortex number conserving, while at low friction and large 1/q > 1 vortices are easily destabilized and proliferate in number. A new measuring technique was employed to identify this hydrodynamic transition: the injection of a tight bundle of many small vortex loops in applied vortex-free flow at relatively high velocities. These vortices are ejected from a vortex sheet covering the AB interface when a two-phase sample of 3He-A and 3He-B is set in rotation and the interface becomes unstable at a critical rotation velocity, triggered by the superfluid Kelvin-Helmholtz instability.Comment: Short review; to be published in Journal of Low Temperature Physics (2006

    Superfluid Spin-down, with Random Unpinning of the Vortices

    Full text link
    The so-called ``creeping'' motion of the pinned vortices in a rotating superfluid involves ``random unpinning'' and ``vortex motion'' as two physically separate processes. We argue that such a creeping motion of the vortices need not be (biased) in the direction of an existing radial Magnus force, nor should a constant microscopic radial velocity be assigned to the vortex motion, in contradiction with the basic assumptions of the ``vortex creep'' model. We point out internal inconsistencies in the predictions of this model which arise due to this unjustified foundation that ignores the role of the actual torque on the superfluid. The proper spin-down rate of a pinned superfluid is then calculated and turns out to be much less than that suggested in the vortex creep model, hence being of even less observational significance for its possible application in explaining the post-glitch relaxations of the radio pulsars.Comment: To be published in J. Low Temp. Phys., Vol. 139, May 2005 [Eqs 11, 15-17 here, have been revised and, may be substituted for the corresponding ones in that paper

    Periodic Vortex Structures in Superfluid 3He-A

    Full text link
    We discuss the general properties of periodic vortex arrangements in rotating superfluids. The different possible structures are classified according to the symmetry space-groups and the circulation number. We calculate numerically several types of vortex structures in superfluid 3He-A. The calculations are done in the Ginzburg-Landau region, but the method is applicable at all temperatures. A phase diagram of vortices is constructed in the plane formed by the magnetic field and the rotation velocity. The characteristics of the six equilibrium vortex solutions are discussed. One of these, the locked vortex 3, has not been considered in the literature before. The vortex sheet forms the equilibrium state of rotating 3He-A at rotation velocities exceeding 2.6 rad/s. The results are in qualitative agreement with experiments.Comment: 13 pages, 7 figures, http://boojum.hut.fi/research/theory/diagram.htm

    Experiments on the twisted vortex state in superfluid 3He-B

    Full text link
    We have performed measurements and numerical simulations on a bundle of vortex lines which is expanding along a rotating column of initially vortex-free 3He-B. Expanding vortices form a propagating front: Within the front the superfluid is involved in rotation and behind the front the twisted vortex state forms, which eventually relaxes to the equilibrium vortex state. We have measured the magnitude of the twist and its relaxation rate as function of temperature above 0.3Tc. We also demonstrate that the integrity of the propagating vortex front results from axial superfluid flow, induced by the twist.Comment: prepared for proceedings of the QFS2007 symposium in Kaza
    corecore