335 research outputs found
A New Approach to Systematic Uncertainties and Self-Consistency in Helium Abundance Determinations
Tests of big bang nucleosynthesis and early universe cosmology require
precision measurements for helium abundance determinations. However, efforts to
determine the primordial helium abundance via observations of metal poor H II
regions have been limited by significant uncertainties. This work builds upon
previous work by providing an updated and extended program in evaluating these
uncertainties. Procedural consistency is achieved by integrating the hydrogen
based reddening correction with the helium based abundance calculation, i.e.,
all physical parameters are solved for simultaneously. We include new atomic
data for helium recombination and collisional emission based upon recent work
by Porter et al. and wavelength dependent corrections to underlying absorption
are investigated. The set of physical parameters has been expanded here to
include the effects of neutral hydrogen collisional emission. Because of a
degeneracy between the solutions for density and temperature, the precision of
the helium abundance determinations is limited. Also, at lower temperatures (T
\lesssim 13,000 K) the neutral hydrogen fraction is poorly constrained
resulting in a larger uncertainty in the helium abundances. Thus the derived
errors on the helium abundances for individual objects are larger than those
typical of previous studies. The updated emissivities and neutral hydrogen
correction generally raise the abundance. From a regression to zero
metallicity, we find Y_p as 0.2561 \pm 0.0108, in broad agreement with the WMAP
result. Tests with synthetic data show a potential for distinct improvement,
via removal of underlying absorption, using higher resolution spectra. A small
bias in the abundance determination can be reduced significantly and the
calculated helium abundance error can be reduced by \sim 25%.Comment: 51 pages, 13 figure
A multi-layer integral model for locally-heated thin film flow
Based on an approach used to model environmental flows such as rivers and estuaries, we develop a new multi-layered model for thin liquid film flow on a locally-heated inclined plane. The film is segmented into layers of equal thickness with the velocity and temperature of each governed by a momentum and energy equation integrated across each layer individually. Matching conditions applied between the layers ensure the continuity of down-plane velocity, temperature, stress and heat flux. Variation in surface tension of the liquid with temperature is considered so that local heating induces a surface shear stress which leads to variation in the film height profile (the Marangoni effect). Moderate inertia and heat convection effects are also included.
In the absence of Marangoni effects, when the film height is uniform, we test the accuracy of the model by comparing it against a solution of the full heat equation using finite differences. The multi-layer model offers significant improvements over that of a single layer. Notably, with a sufficient number of layers, the solution does not exhibit local regions of negative temperature often predicted using a single-layer model.
With Marangoni effects included the film height varies however we find heat convection can mitigate this variation by reducing the surface temperature gradient and hence the surface shear stress. Numerical results corresponding to the flow of water on a vertical plane show that very thin films are dominated by the Marangoni shear stress which can be sufficiently strong to overcome gravity leading to a recirculation in the velocity field. This effect reduces with increasing film thickness and the recirculation eventually disappears. In this case heating is confined entirely to the interior of the film leading to a uniform height profile
Determination of interferon gamma associated with malaria parasitaemia among patients attending selected hospitals in Zaria, Kaduna State, Nigeria
BackgroundMalaria has been recognized as a severe and life- threatening illness for thousands of years. It is still one of the most common diseases affecting humans worldwide. Results gathered in primates challenged by Plasmodium falciparum and, to some extent, in humans, point to interferon gamma as a possible immune mediator or at least a surrogate marker significantly associated with protection against Plasmodium falciparum and actually, the only surrogate available to-date.AimThis study was aimed at determining malaria parasitaemia and interferon gamma concentration among patients attending selected hospitals in Zaria, Kaduna State, Nigeria.MethodsFour hundred blood samples were collected from four hospitals in Zaria, Kaduna State.The samples were microscopically screened for malaria parasites. The concentrations of interferon gamma were determined using ELISA, and the results obtained were analysed using Chi square.ResultsOnly the ring trophozoites of Plasmodium falciparum were observed in the infected samples. In the whole study population, males had a higher parasitaemia than females.The individuals with Plasmodium falciparum infection had the highest mean concentrations of interferon gamma with 121.32pg/ml than those in the negative control group, that is, those without the infection (75.69pg/ml). There was no statistically significant difference (p=0.079).ConclusionThis study shows a higher Plasmodium falciparumparasitaemia in males than females, with a relatively higher concentration of interferon gamma in the group with parasitamia than the control group
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
Diversity of Lactobacillus Species of Stilton Cheese Relates to Site of Isolation
This study has characterized the dominant non-starter Lactobacillus species isolated from different sites in a Stilton cheese to establish its diversity, stress-tolerance, anti-microbial activity and potential contribution to quality of cheese. Fifty-nine Lactobacillus isolates were cultured from the outer crust, blue veins and white core of the cheese and were speciated phenotypically and by 16S rDNA sequence analysis. Lactobacillus plantarum was the dominant species detected with only two isolates identified as Lactobacillus brevis. Strains were typed by pulse-field gel electrophoresis (PFGE) using the enzyme NotI to examine their genomic diversity. Cluster analysis of PFGE patterns produced five major clusters which associated isolates with their sites of isolation within the cheese. One L. plantarum isolate from each cheese site was selected and evaluated for salt, acid, relative humidity, and heat tolerance to determine whether stress conditions within the isolation site selected their phenotype. D72°C values were 6, 13, and 17 s for strains from the crust, veins and core, respectively, suggesting strains on the crust may not have been able to survive pasteurization and therefore had been added post-pasteurization. All strains recovered from heat injury within 24–48 h at 4°C. pH values of 3, 3.5, and 4 suppressed growth but strains showed a varying ability to grow at pH 4.5 and 5; isolates from the core (which has the lowest pH) were the most acid-tolerant. All strains grew at 3.5 and 5% salt but were suppressed at 10%; those from the crust (which has a lower water activity) were the most halo-tolerant, growing at 8% salt whereas strains from the core were sensitive to this salt concentration. All 57 L. plantarum isolates were examined for antimicrobial activity and variable activity against Lactobacillus pentosus and other genera was demonstrated; plantaricin EF genes were present in 65% of strains. It was concluded that there are varied phenotypes and genotypes of Lactobacillus in a Stilton cheese according to site of isolation. Occurrence of different L. plantarum genotypes could contribute to variation in the cheese quality from batch to batch and provides criteria for selecting isolates as potential adjunct cultures
Dust in Supernovae and Supernova Remnants I : Formation Scenarios
Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe
A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector
A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
Survival of Mycobacterium avium subspecies paratuberculosis in retail pasteurised milk
A survey of retail purchased semi-skimmed pasteurised milk (n = 368) for Mycobacterium avium subspecies paratuberculosis (MAP) was conducted between May 2014 and June 2015 across the midlands of England using the Phage-PCR assay. Overall, 10.3% of the total samples collected contained viable MAP cells, confirming that pasteurisation is not capable of fully eliminating human exposure to viable MAP through milk. Comparison of the results gained using the Phage-PCR assay with the results of surveys using either culture or direct PCR suggest that the phage-PCR assay is able to detect lower numbers of cells, resulting in an increase in the number of MAP-positive samples detected. Comparison of viable count and levels of MAP detected in bulk milk samples suggest that MAP is not primarily introduced into the milk by faecal contamination but rather are shed directly into the milk within the udder. In addition results detected an asymmetric distribution of MAP exists in the milk matrix prior to somatic cell lysis, indicating that the bacterial cells in naturally contaminated milk are clustered together and may primarily be located within somatic cells. These latter two results lead to the hypothesis that intracellular MAP within the somatic cells may be protected against heat inactivation during pasteurisation, accounting for the presence of low levels of MAP detected in retail milk
Idiopathic pulmonary fibrosis: Best practice in monitoring and managing a relentless fibrotic disease
Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial lung disease that is, by definition, progressive. Progression of IPF is reflected by a decline in lung function, worsening of dyspnea and exercise capacity, and deterioration in health-related quality of life. In the short term, the course of disease for an individual patient is impossible to predict. A period of relative stability in forced vital capacity (FVC) does not mean that FVC will remain stable in the near future. Frequent monitoring using multiple assessments, not limited to pulmonary function tests, is important to evaluate disease progression in individual patients and ensure that patients are offered appropriate care. Optimal management of IPF requires a multidimensional approach, including both pharmacological therapy to slow decline in lung function and supportive care to preserve patients' quality of life
- …
