74 research outputs found
We Marched. Now What?!: Positionality, Persistence, and Power as Catalysts for Change
Keynote address delivered on October 20, 2018, at the Seneca Falls Dialogues Bi-annual Conference, Seneca Falls, New York.SUNY BrockportThe Seneca Falls Dialogues Journa
We Marched. Now What?!: Positionality, Persistence, and Power as Catalysts for Change
Keynote address delivered on October 20, 2018, at the Seneca Falls Dialogues Bi-annual Conference, Seneca Falls, New York
A stochastic evolutionary model generating a mixture of exponential distributions
Recent interest in human dynamics has stimulated the investigation of the stochastic processes that explain human behaviour in various contexts, such as mobile phone networks and social media.
In this paper, we extend the stochastic urn-based model proposed in \cite{FENN15} so that it can generate mixture models,
in particular, a mixture of exponential distributions.
The model is designed to capture the dynamics of survival analysis, traditionally employed in clinical trials, reliability analysis in engineering, and more recently in the analysis of large data sets recording human dynamics. The mixture modelling approach, which is relatively simple and well understood, is very effective in capturing heterogeneity in data.
We provide empirical evidence for the validity of the model, using a data set of popular search engine queries collected over a period of 114 months. We show that the survival function of these queries is closely matched by the exponential mixture solution for our model
Toward an internally consistent astronomical distance scale
Accurate astronomical distance determination is crucial for all fields in
astrophysics, from Galactic to cosmological scales. Despite, or perhaps because
of, significant efforts to determine accurate distances, using a wide range of
methods, tracers, and techniques, an internally consistent astronomical
distance framework has not yet been established. We review current efforts to
homogenize the Local Group's distance framework, with particular emphasis on
the potential of RR Lyrae stars as distance indicators, and attempt to extend
this in an internally consistent manner to cosmological distances. Calibration
based on Type Ia supernovae and distance determinations based on gravitational
lensing represent particularly promising approaches. We provide a positive
outlook to improvements to the status quo expected from future surveys,
missions, and facilities. Astronomical distance determination has clearly
reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press
(chapter 8 of a special collection resulting from the May 2016 ISSI-BJ
workshop on Astronomical Distance Determination in the Space Age
Interaction of inflammatory cytokines and erythropoeitin in iron metabolism and erythropoiesis in anaemia of chronic disease
In chronic inflammatory conditions increased endogenous release of specific cytokines (TNFα, IL-1, IL-6, IFNγ and others) is presumed. It has been shown that those of monocyte lineage play a key role in cytokine expression and synthesis. This may be associated with changes in iron metabolism and impaired erythropoiesis and may lead to development of anaemia in patients with rheumatoid arthritis. Firstly, increased synthesis of acute phase proteins, like ferritin, during chronic inflammation is proposed as the way by which the toxic effect of iron and thereby the synthesis of free oxy-radicals causing the damage on the affected joints, may be reduced. This is associated with a shift of iron towards the mononuclear phagocyte system which may participate in the development of anaemia of chronic disease. Secondly, an inhibitory action of inflammatory cytokines (TNFα, IL-1), on proliferation and differentiation of erythroid progenitors as well as on synthesis of erythropoietin has been shown, thereby also contributing to anaemia. Finally, chronic inflammation causes multiple, complex disturbances in the delicate physiologic equilibrium of interaction between cytokines and cells (erythroid progenitors, cells of mononuclear phagocyte system and erythropoietin producing cells) leading to development of anaemia of chronic disease (Fig. 1)
Minimal model of strategy switching in the plus-maze navigation task
International audiencePrefrontal cortex (PFC) has been implicated in the ability to switch behavioral strategies in response to changes in reward contingencies. A recent experimental study has shown that separate subpopulations of neurons in the prefrontal cortex were activated when rats switched between allocentric place strategies and egocentric response strategies in the plus maze. In this paper we propose a simple neural-network model of strategy switching, in which the learning of the two strategies as well as learning to select between those strategies is governed by the same temporal-difference (TD) learning algorithm. We show that the model reproduces the experimental data on both behavioral and neural levels. On the basis of our results we derive testable prediction concerning a spatial dynamics of the phasic dopamine signal in the PFC, which is thought to encode reward-prediction error in the TD-learning theory
Recommended from our members
Spectroscopic observations and analysis of the peculiar SN 1999aa
We present an extensive new time series of spectroscopic data of the peculiar SN 1999aa in NGC 2595. Our data set includes 25 optical spectra between -11 and +58 days with respect to B-band maximum light, providing an unusually complete time history. The early spectra resemble those of an SN 1991T-like object but with a relatively strong Ca H and K absorption feature. The first clear sign of Si II lambda6355, characteristic of Type Ia supernovae, is found at day -7, and its velocity remains constant up to at least the first month after B-band maximum light. The transition to normal-looking spectra is found to occur earlier than in SN 1991T, suggesting SN 1999aa as a possible link between SN 1991T-like and Branch-normal supernovae. Comparing the observations with synthetic spectra, doubly ionized Fe, Si, and Ni are identified at early epochs. These are characteristic of SN 1991T-like objects. Furthermore, in the day -11 spectrum, evidence is found for an absorption feature that could be identified as high velocity C II lambda6580 or H alpha. At the same epoch C III lambda4648.8 at photospheric velocity is probably responsible for the absorption feature at 4500 8. High-velocity Ca is found around maximum light together with Si II and Fe II confined in a narrow velocity window. Implied constraints on supernovae progenitor systems and explosion hydrodynamic models are briefly discussed
Spectroscopic observations of sn 2012fr: A luminous, normal type Ia supernova with early high-velocity features and a late velocity plateau
We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si lambda 6355 line that can be cleanly decoupled from the lower velocity 'photospheric' component. This Si lambda 6355 HVF fades by phase - 5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of similar to 12,000 km s(-1) until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v approximate to 12,000 km s(-1) with narrow line width and long velocity plateau, as well as an HVF beginning at v approximate to 31,000 km s(-1) two weeks before maximum. SN 2012fr resides on the border between the 'shallow silicon' and 'core-normal' subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the 'low velocity gradient' group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia
The Polygenic and Monogenic Basis of Blood Traits and Diseases
Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases
Recommended from our members
Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk.
Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies
- …
