858 research outputs found

    4f spin density in the reentrant ferromagnet SmMn2Ge2

    Full text link
    The spin contribution to the magnetic moment in SmMn2Ge2 has been measured by magnetic Compton scattering in both the low and high temperature ferromagnetic phases. At low temperature, the Sm site is shown to possess a large 4f spin moment of 3.4 +/- 0.1 Bohr magnetons, aligned antiparallel to the total magnetic moment. At high temperature, the data show conclusively that ordered magnetic moments are present on the samarium site.Comment: 5 pages, 2 figures, transferred from PRL to PRB (Rapid Comm.

    Thermomagnetic history effects in SmMn2_2Ge2_2

    Full text link
    The intermetallic compound SmMn2_2Ge2_2, displaying multiple magnetic phase transitions, is being investigated in detail for its magnetization behavior near the 145 K first order ferromagnetic to antiferromagnetic transition occuring on cooling, in particular for thermomagnetic history effects in the magnetization data. The most unusual finding is that the thermomagnetic irreversibility, [= MFCW^{FCW}(T)-MZFC^{ZFC}(T)] at 135 K is higher in intermediate magnetic field strengths. By studying the response of the sample (i.e., thermomagnetic irreversibility and thermal hysteresis) to different histories of application of magnetic field and temperature, we demonstrate how the supercooling and superheating of the metastable magnetic phases across the first order transition at 145 K contribute to overall thermomagnetic irreversibility.Comment: 15 pages, 5 figures, to appear in Physical Review

    b-Jet Identification in the D0 Experiment

    Get PDF
    Algorithms distinguishing jets originating from b quarks from other jet flavors are important tools in the physics program of the D0 experiment at the Fermilab Tevatron p-pbar collider. This article describes the methods that have been used to identify b-quark jets, exploiting in particular the long lifetimes of b-flavored hadrons, and the calibration of the performance of these algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Search for pair production of the scalar top quark in the electron-muon final state

    Get PDF
    We report the result of a search for the pair production of the lightest supersymmetric partner of the top quark (t~1\tilde{t}_1) in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider corresponding to an integrated luminosity of 5.4 fb1^{-1}. The scalar top quarks are assumed to decay into a bb quark, a charged lepton, and a scalar neutrino (ν~\tilde{\nu}), and the search is performed in the electron plus muon final state. No significant excess of events above the standard model prediction is detected, and improved exclusion limits at the 95% C.L. are set in the the (Mt~1M_{\tilde{t}_1},Mν~M_{\tilde{\nu}}) mass plane

    Measurement of spin correlation in ttbar production using dilepton final states

    Get PDF
    We measure the correlation between the spin of the top quark and the spin of the anti-top quark in (ttbar -> W+ W- b bbar -> l+ nu b l- nubar bbar) final states produced in ppbar collisions at a center of mass energy sqrt(s)=1.96 TeV, where l is an electron or muon. The data correspond to an integrated luminosity of 5.4 fb-1 and were collected with the D0 detector at the Fermilab Tevatron collider. The correlation is extracted from the angles of the two leptons in the t and tbar rest frames, yielding a correlation strength C= 0.10^{+0.45}_{-0.45}, in agreement with the NLO QCD prediction within two standard deviations, but also in agreement with the no correlation hypothesis.Comment: 10 pages, 3 figures, submitted to PL

    Search for the standard model Higgs boson in tau final states

    Get PDF
    We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 inverse femtobarn of data collected with the D0 detector at the Fermilab Tevatron ppbar collider. We select two final states: tau plus missing transverse energy and b jets, and tau+ tau- plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV.Comment: publication versio

    Search for pair production of the scalar top quark in muon+tau final states

    Get PDF
    We present a search for the pair production of scalar top quarks (t~1\tilde{t}_{1}), the lightest supersymmetric partners of the top quarks, in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96 TeV, using data corresponding to an integrated luminosity of {7.3 fb1fb^{-1}} collected with the \dzero experiment at the Fermilab Tevatron Collider. Each scalar top quark is assumed to decay into a bb quark, a charged lepton, and a scalar neutrino (ν~\tilde{\nu}). We investigate final states arising from t~1t~1ˉbbˉμτν~ν~\tilde{t}_{1} \bar{\tilde{t}_{1}} \rightarrow b\bar{b}\mu\tau \tilde{\nu} \tilde{\nu} and t~1t~1ˉbbˉττν~ν~\tilde{t}_{1} \bar{\tilde{t}_{1}} \rightarrow b\bar{b}\tau\tau \tilde{\nu} \tilde{\nu}. With no significant excess of events observed above the background expected from the standard model, we set exclusion limits on this production process in the (mt~1m_{\tilde{t}_{1}},mν~m_{\tilde{\nu}}) plane.Comment: Submitted to Phys. Lett.
    corecore