858 research outputs found
4f spin density in the reentrant ferromagnet SmMn2Ge2
The spin contribution to the magnetic moment in SmMn2Ge2 has been measured by
magnetic Compton scattering in both the low and high temperature ferromagnetic
phases. At low temperature, the Sm site is shown to possess a large 4f spin
moment of 3.4 +/- 0.1 Bohr magnetons, aligned antiparallel to the total
magnetic moment. At high temperature, the data show conclusively that ordered
magnetic moments are present on the samarium site.Comment: 5 pages, 2 figures, transferred from PRL to PRB (Rapid Comm.
Thermomagnetic history effects in SmMnGe
The intermetallic compound SmMnGe, displaying multiple magnetic phase
transitions, is being investigated in detail for its magnetization behavior
near the 145 K first order ferromagnetic to antiferromagnetic transition
occuring on cooling, in particular for thermomagnetic history effects in the
magnetization data. The most unusual finding is that the thermomagnetic
irreversibility, [= M(T)-M(T)] at 135 K is higher in
intermediate magnetic field strengths. By studying the response of the sample
(i.e., thermomagnetic irreversibility and thermal hysteresis) to different
histories of application of magnetic field and temperature, we demonstrate how
the supercooling and superheating of the metastable magnetic phases across the
first order transition at 145 K contribute to overall thermomagnetic
irreversibility.Comment: 15 pages, 5 figures, to appear in Physical Review
b-Jet Identification in the D0 Experiment
Algorithms distinguishing jets originating from b quarks from other jet
flavors are important tools in the physics program of the D0 experiment at the
Fermilab Tevatron p-pbar collider. This article describes the methods that have
been used to identify b-quark jets, exploiting in particular the long lifetimes
of b-flavored hadrons, and the calibration of the performance of these
algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Search for pair production of the scalar top quark in the electron-muon final state
We report the result of a search for the pair production of the lightest
supersymmetric partner of the top quark () in
collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron
collider corresponding to an integrated luminosity of 5.4 fb. The scalar
top quarks are assumed to decay into a quark, a charged lepton, and a
scalar neutrino (), and the search is performed in the electron
plus muon final state. No significant excess of events above the standard model
prediction is detected, and improved exclusion limits at the 95% C.L. are set
in the the (,) mass plane
Measurement of spin correlation in ttbar production using dilepton final states
We measure the correlation between the spin of the top quark and the spin of
the anti-top quark in (ttbar -> W+ W- b bbar -> l+ nu b l- nubar bbar) final
states produced in ppbar collisions at a center of mass energy sqrt(s)=1.96
TeV, where l is an electron or muon. The data correspond to an integrated
luminosity of 5.4 fb-1 and were collected with the D0 detector at the Fermilab
Tevatron collider. The correlation is extracted from the angles of the two
leptons in the t and tbar rest frames, yielding a correlation strength C=
0.10^{+0.45}_{-0.45}, in agreement with the NLO QCD prediction within two
standard deviations, but also in agreement with the no correlation hypothesis.Comment: 10 pages, 3 figures, submitted to PL
Search for the standard model Higgs boson in tau final states
We present a search for the standard model Higgs boson using hadronically
decaying tau leptons, in 1 inverse femtobarn of data collected with the D0
detector at the Fermilab Tevatron ppbar collider. We select two final states:
tau plus missing transverse energy and b jets, and tau+ tau- plus jets. These
final states are sensitive to a combination of associated W/Z boson plus Higgs
boson, vector boson fusion and gluon-gluon fusion production processes. The
observed ratio of the combined limit on the Higgs production cross section at
the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of
115 GeV.Comment: publication versio
Search for pair production of the scalar top quark in muon+tau final states
We present a search for the pair production of scalar top quarks
(), the lightest supersymmetric partners of the top quarks, in
collisions at a center-of-mass energy of 1.96 TeV, using data
corresponding to an integrated luminosity of {7.3 } collected with the
\dzero experiment at the Fermilab Tevatron Collider. Each scalar top quark is
assumed to decay into a quark, a charged lepton, and a scalar neutrino
(). We investigate final states arising from and
. With no significant excess of events observed above the
background expected from the standard model, we set exclusion limits on this
production process in the (,) plane.Comment: Submitted to Phys. Lett.
- …
