40 research outputs found
Analysis of signalling pathways using continuous time Markov chains
We describe a quantitative modelling and analysis approach for signal transduction networks.
We illustrate the approach with an example, the RKIP inhibited ERK pathway [CSK+03]. Our models are high level descriptions of continuous time Markov chains: proteins are modelled by synchronous processes and reactions by transitions. Concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis such as what is the probability that if a concentration reaches a certain level, it will remain at that level thereafter? or how does varying a given reaction rate affect that probability? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable
Geometric Path Integrals. A Language for Multiscale Biology and Systems Robustness
In this paper we suggest that, under suitable conditions, supervised learning
can provide the basis to formulate at the microscopic level quantitative
questions on the phenotype structure of multicellular organisms. The problem of
explaining the robustness of the phenotype structure is rephrased as a real
geometrical problem on a fixed domain. We further suggest a generalization of
path integrals that reduces the problem of deciding whether a given molecular
network can generate specific phenotypes to a numerical property of a
robustness function with complex output, for which we give heuristic
justification. Finally, we use our formalism to interpret a pointedly
quantitative developmental biology problem on the allowed number of pairs of
legs in centipedes
On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach
In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective
S-system modelling of endemic infections
AbstractInfectious diseases often exhibit complex dynamics that can only be understood when analyzed with mathematical models. These models are typically nonlinear, which makes it difficult to compare their mutual merits. It is shown how models for infectious diseases can be objectively compared upon representing them as special cases of a canonical form for nonlinear functions and differential equations, called an “S-system”. Besides comparison and classification, this form allows natural generalizations of existing models and the objective evaluation of model extensions. A variety of methods facilitate the analysis of infectious disease models in S-system form
