4 research outputs found
Landau Levels in the noncommutative
We formulate the Landau problem in the context of the noncommutative analog
of a surface of constant negative curvature, that is surface, and
obtain the spectrum and contrast the same with the Landau levels one finds in
the case of the commutative space.Comment: 19 pages, Latex, references and clarifications added including 2
figure
The dS/CFT Correspondence and the Big Smash
Recent observations suggest that the cosmological equation-of-state parameter
w is close to -1. To say this is to imply that w could be slightly less than
-1, which leads to R.Caldwell's "Phantom cosmologies". These often have the
property that they end in a "Big Smash", a final singularity in which the
Universe is destroyed in a finite proper time by excessive *expansion*. We show
that, classically, this fate is not inevitable: there exist Smash-free Phantom
cosmologies, obtained by a suitable perturbation of the deSitter equation of
state, in which the spacetime is in fact asymptotically deSitter. [Contrary to
popular belief, such cosmologies, which violate the Dominant Energy Condition,
do not necessarily violate causality.] We also argue, however, that the
physical interpretation of these classically acceptable spacetimes is radically
altered by ``holography'', as manifested in the dS/CFT correspondence. It is
shown that, if the boundary CFTs have conventional properties, then recent
ideas on "time as an inverse renormalization group flow" can be used to rule
out these cosmologies. Very recently, however, it has been argued that the CFTs
in dS/CFT are of a radically unconventional form, and this opens up the
possibility that Smash-free Phantom spacetimes offer a simple model of a
"bouncing" cosmology in which the quantum-mechanical entanglement of the field
theories in the infinite past and future plays an essential role.Comment: 22 pages, clarification of triple analytic continuation, additional
Comments added in the light of hep-th/020724
