58 research outputs found
Investigating the impact and reaction pathway of toluene on a SOFC running on syngas
The integration of solid oxide fuel cells (SOFCs) with gasification systems have theoretically been shown to have a great potential to provide highly efficient distributed generation energy systems that can be fuelled by biomass including municipal solid waste. The syngas produced from the gasification of carbonaceous material is rich in hydrogen, carbon monoxide and methane that can fuel SOFCs. However, other constituents such as tar can cause catalyst deactivation, and blockage of the diffusion pathways. This work examines the impact of increasing concentrations of toluene as a model tar in a typical syngas composition fed to a NiO-GDC/TZ3Y/8YSZ/LSM-LSM SOFC membrane electrode assembly operating at 850°C and atmospheric pressure. Results suggest that up to 20 g/Nm3 of toluene and a low fuel utilisation factor (c.a. 17%) does not negatively impact cell performance and rather acts to increase the available hydrogen by undergoing reformation. At these conditions carbon deposition does occur, detected through EDS analysis, but serves to decrease the ASR rather than degrade the cell. Alternatively, the cell operating with 32 g/Nm3 toluene and with a fuel utilisation of 66.7% is dramatically affected through increased ASR which is assumed to be caused by increased carbon deposition. In order to test for the presence of tar products at the anode exhaust samples have been captured using an absorbing filter with results from HS-GC/MS analysis showing the presence of toluene only. © 2014 Hydrogen Energy Publications, LLC
The twelve principles of CO2 Chemistry
This paper introduces a set of 12 Principles, based on the acronym CO2 CHEMISTRY, which are intended to form a set of criteria for assessing the viability of different processes or reactions for using CO2 as a feedstock for making organic chemicals. The principles aim to highlight the synergy of Carbon Dioxide Utilisation (CDU) with the components of green and sustainable chemistry as well as briefly pointing out the connection to the energy sector
A barrier and techno-economic analysis of small-scale bCHP (biomass combined heat and power) schemes in the UK
bCHP (Biomass combined heat and power) systems are highly efficient at smaller-scales when a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost fossil fuel incumbent. The paper reviews the barriers to small-scale bCHP project development in the UK along with a case study of a failed 1.5MWel bCHP scheme. The paper offers possible explanations for the project's failure and suggests adaptations to improve the project resilience. Analysis of the project's: capital structuring contract length and bankability; feedstock type and price uncertainty, and plant oversizing highlight the negative impact of the existing project barriers on project development. The research paper concludes with a discussion on the effects of these barriers on the case study project and this industry more generally. A greater understanding of the techno-economic effects of some barriers for small-scale bCHP schemes is demonstrated within this paper, along with some methods for improving the attractiveness and resilience of projects of this kind
The role of hydrogen and fuel cells in the global energy system
Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarb onisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, h eat, industry, transport and energy storage in a low - carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain nic hes such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225,000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium - term future no longer seems an unrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world
Estimating Arctic Temperature Impacts From Select European Residential Heating Appliances and Mitigation Strategies
Optically pure lactic acid production from softwood-derived mannose by Pediococcus acidilactici
- …
