95 research outputs found

    Fracture toughness and fatigue crack growth rate properties in wire + arc additive manufactured Ti-6Al-4V

    Get PDF
    This paper presents an experimental investigation of the fracture and fatigue crack growth properties of Ti-6Al-4V produced by the Wire + Arc Additive Manufacture (WAAM) process. First, fracture toughness was measured for two different orientations with respect to the build direction; the effect of wire oxygen content and build strategy were also evaluated in the light of microstructure examination. Second, fatigue crack growth rates were measured for fully additive manufactured samples, as well as for samples containing an interface between WAAM and wrought materials. The latter category covers five different scenarios of crack location and orientation with respect to the interface. Fatigue crack growth rates are compared with that of the wrought or WAAM alone conditions. Crack growth trajectory of these tests is discussed in relation to the microstructure characteristic

    Influence of the microstructure on fatigue and fracture toughness properties of large heat-treated mold steels

    Get PDF
    The standard ISO 1.2738 medium-carbon low-alloy steel has long been used to fabricate plastic molds for injection molding of large automotive components, such as bumpers and dashboards. These molds are usually machined from large pre-hardened steel blooms. Due to the bloom size, the heat treatment yields mixed microstructures, continuously varying from surface to core. Negative events (such as microcracks due to improper weld bed deposition or incomplete extraction of already formed plastic objects) or too large thermal/mechanical stresses can conceivably cause mold failure during service due to the low fracture toughness and fatigue resistance typically encountered in large slack quenched and tempered ISO 1.2738 steel blooms. Alternative steel grades, including both non-standard microalloyed steels, designed for the same production process, and precipitation hardening steels, have recently been proposed by steelworks. However, the fracture toughness and the fatigue properties of these steels, and hence their response during the service, are not well known. Results of an experimental campaign to assess the fracture toughness and fatigue properties, as well as the basic mechanical properties, of a microalloyed and a precipitation hardening plastic mold steel blooms are presented and commented, also in respect to the results previously obtained by two commercial ISO 1.2738 ones. Experimental results show that these steels generally exhibit low fracture toughness values; in the traditional quenched and tempered bloom steels the brittleness may be caused both by the presence of mixed microstructures and by grain boundaries segregation, while in the precipitation hardened one the brittleness probably stems from the precipitation phenomena. This study suggests that microalloyed and precipitation hardening steels may be used to produce large plastic mold, yet the fracture toughness still remains the most critical propert

    Fatigue crack propagation behaviour in wire+arc additive manufactured Ti‐6Al‐4V: Effects of microstructure and residual stress

    Get PDF
    Fatigue crack propagation tests of Ti‐6Al‐4V fabricated by the Wire+Arc Additive Manufacturing (WAAM) process are analysed. Crack growth rate and trajectory are examined before and after the crack tip crossing an interface between the WAAM and wrought alloys. The study has focused on the microstructure and residual stress effect. First, the differences in crack growth rate and path between WAAM and wrought alloys are attributed to their different microstructure; the equiaxed wrought alloy has straight crack path, whereas the WAAM lamellar structure causes tortuous crack path resulting in lower crack growth rate. Second, based on measured residual stress profile in the as-built WAAM piece, retained residual stress in the much smaller compact tension specimens and its effect on crack growth rate are calculated by the finite element method. Numerical simulation shows considerable residual stress in the test specimen and the stress magnitude depends on the initial crack location and propagation direction in relation to the WAAM-wrought interface. Residual stress is released immediately if the initial crack is in the wrought substrate; hence it has little effect. In contrast, when crack grows from WAAM to wrought, residual stress is retained resulting in higher stress intensity factor; hence greater crack growth rate.<br/

    Fatigue performance of aircraft panels with novel skin buckling containment features

    Get PDF
    Abstract: To increase structural efficiency of stiffened panels in an aircraft, it is plausible to introduce skin buckling containment features to increase the local skin stability and thus static strength performance. Introducing buckling containment features may also significantly influ-ence the fatigue crack growth performance of the stiffened panel. This study focuses on the experimental demonstration of panel durability with skin bay buckling containment features. Through a series of fatigue crack growth tests on integrally machined aluminium alloy stiffened panels, the potential to simultaneously improve static strength performance and crack propaga-tion behaviour is demonstrated. The introduction of prismatic buckling containment features which have yielded significant static strength performance gains have herein demonstrated potential fatigue life gains of up to þ 63 per cent
    corecore