214 research outputs found

    Surveillance programs for detection and characterization of emergent pathogens and antimicrobial resistance: results from the Division of Infectious Diseases, UNIFESP

    Get PDF
    Several epidemiological changes have occurred in the pattern of nosocomial and community acquired infectious diseases during the past 25 years. Social and demographic changes possibly related to this phenomenon include a rapid population growth, the increase in urban migration and movement across international borders by tourists and immigrants, alterations in the habitats of animals and arthropods that transmit disease, as well as the raise of patients with impaired host defense abilities. Continuous surveillance programs of emergent pathogens and antimicrobial resistance are warranted for detecting in real time new pathogens, as well as to characterize molecular mechanisms of resistance. In order to become more effective, surveillance programs of emergent pathogens should be organized as a multicenter laboratory network connected to the main public and private infection control centers. Microbiological data should be integrated to guide therapy, adapting therapy to local ecology and resistance patterns. This paper presents an overview of data generated by the Division of Infectious Diseases, Federal University of São Paulo, along with its participation in different surveillance programs of nosocomial and community acquired infectious diseases.Várias alterações epidemiológicas ocorreram no perfil das doenças infecciosas hospitalares e comunitárias nos últimos 25 anos. Mudanças sociais e demográficas possivelmente relacionadas com esse fenômeno incluem o rápido crescimento populacional, o aumento da migração urbana e deslocamento através de fronteiras internacionais por turistas e imigrantes, alterações nos habitats de animais e artrópodes que transmitem doença assim como o aumento no número de pacientes com deficiências nas respostas de defesa. Os programas contínuos de vigilância de patógenos emergentes e resistência antimicrobiana são necessários para a detecção em tempo real de novos patógenos assim como para caracterizar mecanismos moleculares de resistência. Para serem mais efetivos, os programasde vigilância dos patógenos emergentes devem ser organizados em uma rede de laboratórios multicêntricos ligados aos principais centros de controle de infecções, públicos e privados. Os dados microbiológicos devem ser integrados a guias terapêuticos adaptando práticas terapêuticas à ecologia local eaos padrões de resistência. O artigo apresenta uma revisão dos dados gerados pela Disciplina de Infectologia, Universidade Federal de São Paulo (UNIFESP), contemplando sua participação nos diferentes programas de vigilância de doenças infecciosas hospitalares e adquiridas na comunidade.Universidade Federal de São Paulo (UNIFESP) Departamento de Medicina Divisão de Doenças InfecciosasUniversidade Federal de São Paulo (UNIFESP) Departamento de Microbiologia, Imunologia e ParasitologiaUNIFESP, Depto. de Medicina Divisão de Doenças InfecciosasUNIFESP, Depto. de Microbiologia, Imunologia e ParasitologiaSciEL

    Ku Regulates the Non-Homologous End Joining Pathway Choice of DNA Double-Strand Break Repair in Human Somatic Cells

    Get PDF
    The repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ consists of at least two sub-pathways—the main Ku heterodimer-dependent or “classic” NHEJ (C-NHEJ) pathway and an “alternative” NHEJ (A-NHEJ) pathway, which usually generates microhomology-mediated signatures at repair junctions. In our study, recombinant adeno-associated virus knockout vectors were utilized to construct a series of isogenic human somatic cell lines deficient in the core C-NHEJ factors (Ku, DNA-PKcs, XLF, and LIGIV), and the resulting cell lines were characterized for their ability to carry out DNA DSB repair. The absence of DNA-PKcs, XLF, or LIGIV resulted in cell lines that were profoundly impaired in DNA DSB repair activity. Unexpectedly, Ku86-null cells showed wild-type levels of DNA DSB repair activity that was dominated by microhomology joining events indicative of A-NHEJ. Importantly, A-NHEJ DNA DSB repair activity could also be efficiently de-repressed in LIGIV-null and DNA-PKcs-null cells by subsequently reducing the level of Ku70. These studies demonstrate that in human cells C-NHEJ is the major DNA DSB repair pathway and they show that Ku is the critical C-NHEJ factor that regulates DNA NHEJ DSB pathway choice

    Bifunctional Avidin with Covalently Modifiable Ligand Binding Site

    Get PDF
    The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (strept)avidin to improve the existing applications. Even so, (strept)avidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces

    Ku70/80 gene expression and DNA-dependent protein kinase (DNA-PK) activity do not correlate with double-strand break (dsb) repair capacity and cellular radiosensitivity in normal human fibroblasts

    Get PDF
    The expression of the Ku70 and Ku80 genes as well as the activity of the DNA-dependent protein kinase (DNA-PK) were studied in 11 normal human fibroblast lines. The proteins studied are known to be part of a double-strand break (dsb) repair complex involved in non-homologous recombination, as was demonstrated for the radiosensitive rodent mutant cell lines of the complementation groups 5–7. The 11 fibroblast lines used in this study represent a typical spectrum of normal human radiosensitivity with the surviving fraction measured for a dose of 3.5 Gy, SF3.5 Gy, ranging from 0.03 to 0.28. These differences in cell survival were previously shown to correlate with the number of non-repaired dsbs. We found that the mRNA signal intensities of both Ku70 and Ku80 genes were fairly similar for the 11 cell lines investigated. In addition, the DNA-PK activity determined by the pulldown assay was fairly constant in these fibroblast lines. Despite the correlation between cell survival and dsb repair capacity, there was no correlation between dsb repair capacity and DNA-PK activity in the tested normal human fibroblast lines. Obviously, in this respect, other proteins/pathways appear to be more relevant. © 1999 Cancer Research Campaig

    Development of a Tetrameric Streptavidin Mutein with Reversible Biotin Binding Capability: Engineering a Mobile Loop as an Exit Door for Biotin

    Get PDF
    A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible

    Long term in-vivo studies of a photo-oxidized bovine osteochondral transplant in sheep

    Get PDF
    BACKGROUND: Articular cartilage has limited capacity to repair. Defects greater than 3 mm heal with formation of inferior fibrous cartilage. Therefore, many attempts have been made to find the ideal graft for larger cartilage lesions. Different grafts, such as untreated or cryopreserved osteochondral transplants, have been used with variable success. METHODS: Photo-oxidized osteochondral grafts were implanted in both femoral condyles of one ovine knee. Untreated xenogeneic and autogeneic grafts served as controls. Three groups of 8 sheep each were formed and they were sacrificed 6, 12 or 18 months after surgery. RESULTS: The macroscopic evaluation of the condyle and graft showed a well-maintained cartilage surface in most grafts at all time points. However, the host cartilage matrix deteriorated considerably in all xenogeneic, most autogeneic and fewer of the photo-oxidized grafts at 12 and 18 months, respectively. The blue colour of the photo-oxidized grafts resulting from the process of photo-oxidation was visible in all grafts at 6 months, had diminished at 12 months and had completely disappeared at 18 months after surgery. Histologically a loss of matrix staining was almost never noticed in untreated xenografts, transiently at 6 months in photo-oxidized grafts and increased at 12 and 18 months. Fusion between graft and host cartilage could be seen in photo-oxidized grafts at 12 and 18 months, but was never seen in autografts and xenografts. CONCLUSIONS: The photo-oxidation of osteochondral grafts and its use as transplant appears to have a beneficial effect on cartilage and bone remodelling. Osteochondral grafts pre-treated with photo-oxidation may be considered for articular cartilage replacement and therefore may delay artificial joint replacements in human patients

    The Leverage of Demographic Dynamics on Carbon Dioxide Emissions: Does Age Structure Matter?

    Get PDF
    This article provides a methodological contribution to the study of the effect of changes in population age structure on carbon dioxide (CO2) emissions. First, I propose a generalization of the IPAT equation to a multisector economy with an age-structured population and discuss the insights that can be obtained in the context of stable population theory. Second, I suggest a statistical model of household consumption as a function of household size and age structure to quantitatively evaluate the extent of economies of scale in consumption of energy-intensive goods, and to estimate age-specific profiles of consumption of energy-intensive goods and of CO2 emissions. Third, I offer an illustration of the methodologies using data for the United States. The analysis shows that per-capita CO2 emissions increase with age until the individual is in his or her 60s, and then emissions tend to decrease. Holding everything else constant, the expected change in U.S. population age distribution during the next four decades is likely to have a small, but noticeable, positive impact on CO2 emissions

    CD4saurus Rex &HIVelociraptor vs. development of clinically useful immunological markers: a Jurassic tale of frozen evolution

    Get PDF
    One of the most neglected areas of everyday clinical practice for HIV physicians is unexpectedly represented by CD4 T cell counts when used as an aid to clinical decisions. All who care for HIV patients believe that CD4+ T cell counts are a reliable method to evaluate a patient immune status. There is however a fatalistic acceptance that besides its general usefulness, CD4+ T cell counts have relevant clincal and immunological limits. Shortcomings of CD4 counts appear in certain clinical scenarios including identification of immunological nonresponders, subsequent development of cancer on antiretroviral teatment, failure on tretment simplification. Historical and recently described parameters might be better suited to advise management of patients at certain times during their disease history. Immunogenotypic parameters and innate immune parameters that define progression as well as immune parameters associated with immune recovery are available and have not been introduced into validation processes in larger trials. The scientific and clinical community needs an effort in stimulating clinical evolution of immunological tests beyond "CD4saurus Rex" introducing new parameters in the clinical arena after appropriate validatio
    corecore