24 research outputs found

    Predation success by a plant-ant indirectly favours the growth and fitness of its host myrmecophyte

    Get PDF
    Mutualisms, or interactions between species that lead to net fitness benefits for each species involved, are stable and ubiquitous in nature mostly due to "byproduct benefits" stemming from the intrinsic traits of one partner that generate an indirect and positive outcome for the other. Here we verify if myrmecotrophy (where plants obtain nutrients from the refuse of their associated ants) can explain the stability of the tripartite association between the myrmecophyte Hirtella physophora, the ant Allomerus decemarticulatus and an Ascomycota fungus. The plant shelters and provides the ants with extrafloral nectar. The ants protect the plant from herbivores and integrate the fungus into the construction of a trap that they use to capture prey; they also provide the fungus and their host plant with nutrients. During a 9-month field study, we over-provisioned experimental ant colonies with insects, enhancing colony fitness (i.e., more winged females were produced). The rate of partial castration of the host plant, previously demonstrated, was not influenced by the experiment. Experimental plants showed higher δ¹⁵N values (confirming myrmecotrophy), plus enhanced vegetative growth (e.g., more leaves produced increased the possibility of lodging ants in leaf pouches) and fitness (i.e., more fruits produced and more flowers that matured into fruit). This study highlights the importance of myrmecotrophy on host plant fitness and the stability of ant-myrmecophyte mutualisms

    MicroRNA-203 functions as a tumor suppressor in basal cell carcinoma

    No full text
    Basal cell carcinoma (BCC) of the skin represents the most common malignancy in humans. MicroRNAs (miRNAs), small regulatory RNAs with pleiotropic function, are commonly misregulated in cancer. Here we identify miR-203, a miRNA abundantly and preferentially expressed in skin, to be downregulated in BCCs. We show that activation of the Hedgehog (HH) pathway, critically involved in the pathogenesis of BCCs, as well as the EGFR/MEK/ERK/c-JUN signaling pathway suppresses miR-203. We identify c-JUN, a key effector of the HH pathway, as a novel direct target for miR-203 in vivo. Further supporting the role of miR-203 as a tumor suppressor, in vivo delivery of miR-203 mimics in a BCC mouse model results in the reduction of tumor growth. Our results identify a regulatory circuit involving miR-203 and c-JUN, which provides functional control over basal cell proliferation and differentiation. We propose that miR-203 functions as a ‘bona fide' tumor suppressor in BCC, whose suppressed expression contributes to oncogenic transformation via derepression of multiple stemness- and proliferation-related genes, and its overexpression could be of therapeutic value

    Distinct roles for fibroblast growth factor signaling in cerebellar development and medulloblastoma

    No full text
    Cerebellar granule neurons are the most abundant neurons in the brain, and a critical element of the circuitry that controls motor coordination and learning. In addition, granule neuron precursors (GNPs) are thought to represent cells of origin for medulloblastoma, the most common malignant brain tumor in children. Thus, understanding the signals that control the growth and differentiation of these cells has important implications for neurobiology and neuro-oncology. Our previous studies have shown that proliferation of GNPs is regulated by Sonic hedgehog (Shh), and that aberrant activation of the Shh pathway can lead to medulloblastoma. Moreover, we have demonstrated that Shh-dependent proliferation of GNPs and medulloblastoma cells can be blocked by basic fibroblast growth factor (bFGF). But while the mitogenic effects of Shh signaling have been confirmed in vivo, the inhibitory effects of bFGF have primarily been studied in culture. Here we demonstrate that mice lacking FGF signaling in GNPs exhibit no discernable changes in GNP proliferation or differentiation. In contrast, activation of FGF signaling has a potent effect on tumor growth: treatment of medulloblastoma cells with bFGF prevents them from forming tumors following transplantation, and inoculation of tumor-bearing mice with bFGF markedly inhibits tumor growth in vivo. These results suggest that activators of FGF signaling may be useful for targeting medulloblastoma and other Shh-dependent tumors

    Piscidin-1-analogs with double L- and D-lysine residues exhibited different conformations in lipopolysaccharide but comparable anti-endotoxin activities

    No full text
    To become clinically effective, antimicrobial peptides (AMPs) should be non-cytotoxic to host cells. Piscidins are a group of fish-derived AMPs with potent antimicrobial and antiendotoxin activities but limited by extreme cytotoxicity. We conjectured that introduction of cationic residue(s) at the interface of polar and non-polar faces of piscidins may control their insertion into hydrophobic mammalian cell membrane and thereby reducing cytotoxicity. We have designed several novel analogs of piscidin-1 by substituting threonine residue(s) with L and D-lysine residue(s). L/D-lysine-substituted analogs showed significantly reduced cytotoxicity but exhibited either higher or comparable antibacterial activity akin to piscidin-1. Piscidin-1-analogs demonstrated higher efficacy than piscidin-1 in inhibiting lipopolysaccharide (LPS)-induced pro-inflammatory responses in THP-1 cells. T15,21K-piscidin-1 (0.5 mg/Kg) and T15,21dK-piscidin-1 (1.0 mg/Kg) demonstrated 100% survival of LPS (12.0 mg/Kg)-administered mice. High resolution NMR studies revealed that both piscidin-1 and T15,21K-piscidin-1 adopted helical structures, with latter showing a shorter helix, higher amphipathicity and cationic residues placed at optimal distances to form ionic/hydrogen bond with lipid A of LPS. Remarkably, T15,21dK-piscidin-1 showed a helix-loop-helix structure in LPS and its interactions with LPS could be sustained by the distance of separation of side chains of R7 and D-Lys-15 which is close to the inter-phosphate distance of lipid A

    Site-Specific Cassette Exchange Systems in the Aedes aegypti Mosquito and the Plutella xylostella Moth

    Get PDF
    Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests
    corecore