1,508 research outputs found

    Universality, limits and predictability of gold-medal performances at the Olympic Games

    Get PDF
    Inspired by the Games held in ancient Greece, modern Olympics represent the world's largest pageant of athletic skill and competitive spirit. Performances of athletes at the Olympic Games mirror, since 1896, human potentialities in sports, and thus provide an optimal source of information for studying the evolution of sport achievements and predicting the limits that athletes can reach. Unfortunately, the models introduced so far for the description of athlete performances at the Olympics are either sophisticated or unrealistic, and more importantly, do not provide a unified theory for sport performances. Here, we address this issue by showing that relative performance improvements of medal winners at the Olympics are normally distributed, implying that the evolution of performance values can be described in good approximation as an exponential approach to an a priori unknown limiting performance value. This law holds for all specialties in athletics-including running, jumping, and throwing-and swimming. We present a self-consistent method, based on normality hypothesis testing, able to predict limiting performance values in all specialties. We further quantify the most likely years in which athletes will breach challenging performance walls in running, jumping, throwing, and swimming events, as well as the probability that new world records will be established at the next edition of the Olympic Games.Comment: 8 pages, 3 figures, 1 table. Supporting information files and data are available at filrad.homelinux.or

    Telomere shortening occurs in Asian Indian Type 2 diabetic patients

    Get PDF
    Aim: Telomere shortening has been reported in several diseases including atherosclerosis and Type 1 diabetes. Asian Indians have an increased predilection for Type 2 diabetes and premature coronary artery disease. The aim of this study was to determine whether telomeric shortening occurs in Asian Indian Type 2 diabetic patients. Methods: Using Southern‐blot analysis we determined mean terminal restriction fragment (TRF) length, a measure of average telomere size, in leucocyte DNA. Type 2 diabetic patients without any diabetes‐related complications (n = 40) and age‐ and sex‐matched control non‐diabetic subjects (n = 40) were selected from the Chennai Urban Rural Epidemiology Study (CURES). Plasma level of malondialdehyde (MDA), a marker of lipid peroxidation, was measured by TBARS (thiobarbituric acid reactive substances) using a fluorescence method. Results: Mean (± SE) TRF lengths of the Type 2 diabetic patients (6.01 ± 0.2 kb) were significantly shorter than those of the control subjects (9.11 ± 0.6 kb) (P = 0.0001). Among the biochemical parameters, only levels of TBARS showed a negative correlation with shortened telomeres in the diabetic subjects (r = −0.36; P = 0.02). However, telomere lengths were negatively correlated with insulin resistance (HOMA‐IR) (r = −0.4; P = 0.01) and age (r = −0.3; P = 0.058) and positively correlated with HDL levels (r = 0.4; P = 0.01) in the control subjects. Multiple linear regression (MLR) analysis revealed diabetes to be significantly (P < 0.0001) associated with shortening of TRF lengths. Conclusions: Telomere shortening occurs in Asian Indian Type 2 diabetic patients

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3

    Get PDF
    Background: Alternative splicing (AS) of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs) in the Drosophila RNA-binding Bruno-3 (Bru-3) gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described. Results: Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates. Conclusion: We found that large introns can promote AS via exon-skipping and exon turnover during evolution likely due to frequent errors in their removal from maturing mRNA. Large introns could be a reservoir of genetic diversity, because they have a greater number of mutable sites than short introns. Taken together, gene structure can constrain and/or promote gene evolution

    Declining Burden of Malaria Over two Decades in a Rural Community of Muheza District, North-Eastern Tanzania.

    Get PDF
    The recently reported declining burden of malaria in some African countries has been attributed to scaling-up of different interventions although in some areas, these changes started before implementation of major interventions. This study assessed the long-term trends of malaria burden for 20 years (1992--2012) in Magoda and for 15 years in Mpapayu village of Muheza district, north-eastern Tanzania, in relation to different interventions as well as changing national malaria control policies.\ud Repeated cross-sectional surveys recruited individuals aged 0 -- 19 years from the two villages whereby blood smears were collected for detection of malaria parasites by microscopy. Prevalence of Plasmodium falciparum infections and other indices of malaria burden (prevalence of anaemia, splenomegaly and gametocytes) were compared across the years and between the study villages. Major interventions deployed including mobile clinic, bed nets and other research activities, and changes in national malaria control policies were also marked. In Magoda, the prevalence of P. falciparum infections initially decreased between 1992 and 1996 (from 83.5 to 62.0%), stabilized between 1996 and 1997, and further declined to 34.4% in 2004. A temporary increase between 2004 and 2008 was followed by a progressive decline to 7.2% in 2012, which is more than 10-fold decrease since 1992. In Mpapayu (from 1998), the highest prevalence was 81.5% in 1999 and it decreased to 25% in 2004. After a slight increase in 2008, a steady decline followed, reaching <5% from 2011 onwards. Bed net usage was high in both villages from 1999 to 2004 (>=88%) but it decreased between 2008 and 2012 (range, 28% - 68%). After adjusting for the effects of bed nets, age, fever and year of study, the risk of P. falciparum infections decreased significantly by >=97% in both villages between 1999 and 2012 (p < 0.001). The prevalence of splenomegaly (>40% to <1%) and gametocytes (23% to <1%) also decreased in both villages.Discussion and conclusionsA remarkable decline in the burden of malaria occurred between 1992 and 2012 and the initial decline (1992 -- 2004) was most likely due to deployment of interventions, such as bed nets, and better services through research activities. Apart from changes of drug policies, the steady decline observed from 2008 occurred when bed net coverage was low suggesting that other factors contributed to the most recent pattern. These results suggest that continued monitoring is required to determine causes of the changing malaria epidemiology and also to monitor the progress towards maintaining low malaria transmission and reaching related millennium development goals

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Democratization and the Diffusion of Shari'a Law: Comparative Insights from Indonesia

    Get PDF
    The democratization of politics has been accompanied by a rise of Islamic laws in many Muslim-majority countries. Despite a growing interest in the phenomenon, the Islamization of politics in democratizing Muslim-majority countries is rarely understood as a process that unfolds across space and time. Based on an original dataset established during years of field research in Indonesia, this article analyzes the spread of shari’a regulations across the world’s largest Muslim-majority democracy since 1998. The article shows that shari’a regulations in Indonesia diffused unevenly across space and time. Explanations put forward in the literature on the diffusion of morality policies in other countries such as geographic proximity, institutions, intergovernmental relations and economic conditions did not explain the patterns in the diffusion of shari’a regulations in Indonesia well. Instead, shari’a regulations in Indonesia were most likely to spread across jurisdictions where local Islamist groups situated outside the party system had an established presence. In short, the Islamization of politics was highly contingent on local conditions. Future research will need to pay more attention to local Islamist activists and networks situated outside formal politics as potential causes for the diffusion of shari’a law in democratizing Muslim-majority countries

    Photosynthesis by six portuguese maize cultivars during drought stress and recovery

    Get PDF
    Photosynthesis, chlorophyll fluorescence and leaf water parameters were measured in six Portuguese maize (Zea mays L.) cultivars during and following a period of drought stress. The leaf relative water content (RWC) responded differently among cultivars but, except for cultivar PB369, recovered close to initial values after watering was restored. Photosynthetic rate and stomatal conductance decreased with drought but more slowly in cultivars PB269 and PB260 than in cultivars AD3R, PB64, PB304 and PB369. Water use efficiency (WUE) decreased during the water stress treatment although with cultivar PB260 the decrease was marked only when the RWC fell below 40%. Recovery of WUE was seen with all cultivars except PB369. The maximum quantum efficiency of photosystem II, the photochemical quenching coefficient, the electron transport rate in PSII and the estimated functional plastoquinone pool tended to decrease with drought, while the non -photochemical quenching coefficient increased. The parameters estimated from chlorophyll fluorescence did not recover in PB369, during re - watering. The results show that PB260 and PB269 were the most tolerant and PB369 was the least tolerant cultivars to water stress. The variation found amongst the cultivars tested suggests the existence of valuable genetic resources for crop improvement in relation to drought tolerance

    Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme

    Get PDF
    Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes

    Bdellovibrio bacteriovorus Inhibits Staphylococcus aureus Biofilm Formation and Invasion into Human Epithelial Cells

    Get PDF
    Bdellovibrio bacteriovorus HD100 is a predatory bacterium that attacks many Gram-negative human pathogens. A serious drawback of this strain, however, is its ineffectiveness against Gram-positive strains, such as the human pathogen Staphylococcus aureus. Here we demonstrate that the extracellular proteases produced by a host-independent B. bacteriovorus (HIB) effectively degrade/inhibit the formation of S. aureus biofilms and reduce its virulence. A 10% addition of HIB supernatant caused a 75% or greater reduction in S. aureus biofilm formation as well as 75% dispersal of pre-formed biofilms. LC-MS-MS analyses identified various B. bacteriovorus proteases within the supernatant, including the serine proteases Bd2269 and Bd2321. Tests with AEBSF confirmed that serine proteases were active in the supernatant and that they impacted S. aureus biofilm formation. The supernatant also possessed a slight DNAse activity. Furthermore, treatment of planktonic S. aureus with the supernatant diminished its ability to invade MCF-10a epithelial cells by 5-fold but did not affect the MCF-10a viability. In conclusion, this study illustrates the hitherto unknown ability of B. bacteriovorus to disperse Gram-positive pathogenic biofilms and mitigate their virulence.open6
    corecore