27 research outputs found
Brief communication. Chromosome number of Severtzov's sheep (Ovis ammon severtzovi: G-banded karyotype comparisons within ovis
Understanding the “blue spot” sodium chloride hot salt stress-corrosion cracking in titanium-6246 during fatigue testing at low pressure
During hot component fatigue tests there have been two cases of low life crack initiation of gas turbine rotating parts manufactured from the Titanium alloy Ti-6246. Both exhibited a small (~0.1 mm) elliptical 'blue spot' at the origin. Through validated striation count work and fracture mechanics it was established that fatigue had propagated with a near-nil initiation life. Early investigation suggested that the 'blue spot' was possibly a region of stage 1 fatigue growth, and was therefore a material behaviour concern with potential implications for service. During an investigation of a later cracking incident in this alloy, subsequently shown to have resulted from stress-corrosion cracking (SCC), near-identical fractographic characteristics to that seen in the "blue spot" were found that subtly differentiated it from stage 1 fatigue. Also, similar 'blue spots' have since been identified on Ti6246 Laboratory hot LCF test specimens and found to have been due to contamination by NaCl, through the application of focussed long-term EDX examination and other novel chemical analyses techniques. By the application of those techniques, fractography, and comparison against these specimens, Rolls-Royce and Imperial College London have collaborated to show that the original two component 'blue spots' were subtle examples of NaCl-related Hot Salt Stress-Corrosion Cracking (HSSCC). Such cracking has not been found to occur in service components, due to air pressure within the engine, and the effect is therefore confined to Laboratory and component tests at near-atmospheric pressure or below
Synaptonemal complexes and chromosome chains in the rodent Ellobius talpinus heterozygous for ten Robertsonian translocations
Changes in the trophic activity of leaf-eating insects in birch along the pollution gradient near the Middle Ural copper smelter
Collision-Induced Dissociation Fragmentation Inside Disulfide C-Terminal Loops of Natural Non-Tryptic Peptides
Collision-induced dissociation (CID) spectra of long non-tryptic peptides are usually quite complicated and rather difficult to interpret. Disulfide bond formed by two cysteine residues at C-terminus of frog skin peptides precludes one to determine sequence inside the forming loop. Thereby, chemical modification of S-S bonds is often used in "bottom up" sequencing approach. However, low-energy CID spectra of natural non-tryptic peptides with C-terminal disulfide cycle demonstrate an unusual fragmentation route, which may be used to elucidate the "hidden" C-terminal sequence. Low charge state protonated molecules experience peptide bond cleavage at the N-terminus of C-terminal cysteine. The forming isomeric acyclic ions serve as precursors for a series of b-type ions revealing sequence inside former disulfide cycle. The reaction is preferable for peptides with basic lysine residues inside the cycle. It may also be activated by acidic protons of Asp and Glu residues neighboring the loop. The observed cleavages may be quite competitive, revealing the sequence inside disulfide cycle, although S-S bond rupture does not occur in this case.</p
