5,357 research outputs found
The Future of RICH Detectors through the Light of the LHCb RICH
The limitations in performance of the present RICH system in the LHCb
experiment are given by the natural chromatic dispersion of the gaseous
Cherenkov radiator, the aberrations of the optical system and the pixel size of
the photon detectors. Moreover, the overall PID performance can be affected by
high detector occupancy as the pattern recognition becomes more difficult with
high particle multiplicities. This paper shows a way to improve performance by
systematically addressing each of the previously mentioned limitations. These
ideas are applied in the present and future upgrade phases of the LHCb
experiment. Although applied to specific circumstances, they are used as a
paradigm on what is achievable in the development and realisation of high
precision RICH detectors
Cherenkov Light Imaging - Fundamentals and recent Developments
We review in a historical way the fundamentals of Cherenkov light imaging
applied to Ring Imaging Cherenkov Counters. We also point out some of the newer
developments in this very active field.Comment: Submitted to special edition of NIMA, Proceedings of RICH201
Simulation Application for the LHCb Experiment
We describe the LHCb detector simulation application (Gauss) based on the
Geant4 toolkit. The application is built using the Gaudi software framework,
which is used for all event-processing applications in the LHCb experiment. The
existence of an underlying framework allows several common basic services such
as persistency, interactivity, as well as detector geometry description or
particle data to be shared between simulation, reconstruction and analysis
applications. The main benefits of such common services are coherence between
different event-processing stages as well as reduced development effort. The
interfacing to Geant4 toolkit is realized through a facade (GiGa) which
minimizes the coupling to the simulation engine and provides a set of abstract
interfaces for configuration and event-by-event communication. The Gauss
application is composed of three main blocks, i.e. event generation, detector
response simulation and digitization which reflect the different stages
performed during the simulation job. We describe the overall design as well as
the details of Gauss application with a special emphasis on the configuration
and control of the underlying simulation engine. We also briefly mention the
validation strategy and the planing for the LHCb experiment simulation.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, LaTeX, 9 eps figures. PSN
TUMT00
Existence of a percolation threshold on finite transitive graphs
Let be a sequence of finite connected vertex-transitive graphs with
volume tending to infinity. We say that a sequence of parameters is a
percolation threshold if for every , the proportion
of vertices contained in the largest cluster
under bond percolation satisfies both \begin{split}
\lim_{n \to \infty} \mathbb{P}_{(1+\varepsilon)p_n}^{G_n} \left( \left\lVert
K_1 \right\rVert \geq \alpha \right) &= 1 \quad \text{for some $\alpha > 0$,
and}
\lim_{n \to \infty} \mathbb{P}_{(1-\varepsilon)p_n}^{G_n} \left( \left\lVert
K_1 \right\rVert \geq \alpha \right) &= 0 \quad \text{for all $\alpha > 0$}.
\end{split} We prove that has a percolation threshold if and only if
does not contain a particular infinite collection of pathological
subsequences of dense graphs. Our argument uses an adaptation of Vanneuville's
new proof of the sharpness of the phase transition for infinite graphs via
couplings [Van22] together with our recent work with Hutchcroft on the
uniqueness of the giant cluster [EH21].Comment: 21 pages. Accepted version, published in IMR
Controlling Cherenkov angles with resonance transition radiation
Cherenkov radiation provides a valuable way to identify high energy particles
in a wide momentum range, through the relation between the particle velocity
and the Cherenkov angle. However, since the Cherenkov angle depends only on
material's permittivity, the material unavoidably sets a fundamental limit to
the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring
Imaging Cherenkov detectors must employ materials transparent to the frequency
of interest as well as possessing permittivities close to unity to identify
particles in the multi GeV range, and thus are often limited to large gas
chambers. It would be extremely important albeit challenging to lift this
fundamental limit and control Cherenkov angles as preferred. Here we propose a
new mechanism that uses constructive interference of resonance transition
radiation from photonic crystals to generate both forward and backward
Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible
way with high sensitivity to any desired range of velocities. Photonic crystals
thus overcome the severe material limit for Cherenkov detectors, enabling the
use of transparent materials with arbitrary values of permittivity, and provide
a promising option suited for identification of particles at high energy with
enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary
information with 18 pages and 5 figures, appended at the end of the file with
the manuscript. Source files in Word format converted to PDF. Submitted to
Nature Physic
Measurements of the branching fractions of B+→ppK+ decays
The branching fractions of the decay B+ → pp̄K+ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment. The total branching fraction, its charmless component Mpp̄ < 2.85 GeV/c2 and the branching fractions via the resonant cc̄ states η c(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are [Equation not available: see fulltext.] Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained
Differential branching fraction and angular analysis of decays
The differential branching fraction of the rare decay is measured as a function of , the
square of the dimuon invariant mass. The analysis is performed using
proton-proton collision data, corresponding to an integrated luminosity of 3.0
\mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is
observed in the region below the square of the mass. Integrating
over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as
d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+
0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1},
where the uncertainties are statistical, systematic and due to the
normalisation mode, , respectively.
In the intervals where the signal is observed, angular distributions are
studied and the forward-backward asymmetries in the dimuon ()
and hadron () systems are measured for the first time. In the
range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} =
-0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} =
-0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde
Consensus: guidelines: best practices for detection, assessment and management of suspected acute drug-induced liver injury during clinical trials in patients with nonalcoholic steatohepatitis
BACKGROUND:
The last decade has seen a rapid growth in the number of clinical trials enrolling patients with nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH). Due to the underlying chronic liver disease, patients with NASH often require different approaches to the assessment and management of suspected drug-induced liver injury (DILI) compared to patients with healthy livers. However, currently no regulatory guidelines or position papers systematically address best practices pertaining to DILI in NASH clinical trials.
AIMS:
This publication focuses on best practices concerning the detection, monitoring, diagnosis and management of suspected acute DILI during clinical trials in patients with NASH.
METHODS:
This is one of several papers developed by the IQ DILI Initiative, comprised of members from 15 pharmaceutical companies, in collaboration with DILI experts from academia and regulatory agencies. This paper is based on extensive literature review, and discussions between industry members with expertise in drug safety and DILI experts from outside industry to achieve consensus on common questions related to this topic.
RESULTS:
Recommended best practices are outlined pertaining to hepatic inclusion and exclusion criteria, monitoring of liver tests, DILI detection, approach to a suspected DILI signal, causality assessment and hepatic discontinuation rules.
CONCLUSIONS:
This paper provides a framework for the approach to assessment and management of suspected acute DILI during clinical trials in patients with NASH
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
Study of and decays and determination of the CKM angle
We report a study of the suppressed and favored
decays, where the neutral meson is detected
through its decays to the and CP-even and
final states. The measurement is carried out using a proton-proton
collision data sample collected by the LHCb experiment, corresponding to an
integrated luminosity of 3.0~fb. We observe the first significant
signals in the CP-even final states of the meson for both the suppressed
and favored modes, as well as
in the doubly Cabibbo-suppressed final state of the decay. Evidence for the ADS suppressed decay , with , is also presented. From the observed
yields in the , and their
charge conjugate decay modes, we measure the value of the weak phase to be
. This is one of the most precise
single-measurement determinations of to date.Comment: 22 pages, 9 figures; All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm
- …
