5 research outputs found

    Multivariable control of a grid-connected wind energy conversion system with power quality enhancement

    Get PDF
    This document is the Accepted Manuscript version of the following article: Kaddour Fouad, Houari Merabet Boulouiha, Ahmed Allali, Ali Taibi, and Mouloud Denai, ‘Multivariable control of a grid-connected wind energy conversion system with power quality enhancement’, Energy Systems, Vol. 9 (1): 25-57, February 2018. The final publication is available at Springer via: https://doi.org/10.1007/s12667-016-0223-7This paper proposes the design of a multivariable robust control strategy for a variable-speed WECS based on a SCIG. Optimal speed control of the SCIG is achieved by a conventional PI controller combined with a MPPT strategy. DTC-SVM technique based on a simple Clarke transformation is used to control the generator-side three-level converter in the variable speed WECS. The flow of real and reactive power between the inverter and the grid is controlled via the grid real and reactive currents and the DC link voltage using multivariable H∞ control. The overall WECS and control scheme are developed in Matlab/Simulink and the performance of the proposed control strategy is evaluated via a set of simulation scenarios replicating various operating conditions of the WECS such as variable wind speed and asymmetric single grid faults. The power quality of the WECS system under H∞ control control approach is assessed and the results show a significant improvement in the total harmonic distorsion as compared to that achieved with a classical PI control.Peer reviewedFinal Accepted Versio

    Intermittent wave energy generation system with hydraulic energy storage and pressure control for stable power output

    Get PDF
    In this paper, we introduced an intermittent wave energy generator (IWEG) system with hydraulic power take-off (PTO) including accumulator storage parts. To convert unsteady wave energy into intermittent but stable electrical output power, theoretical models, including wave energy capture, hydraulic energy storage, and torque balance between hydraulic motor and electrical generator, have been developed. Then, the integrated IWEG simulator was constructed and tested at the Ningbo Institute of Technology. Through a series of experimental tests, the relationship between operating flow rates and pressure drops across the hydraulic motor was established. Furthermore, on the basis of the pressure drop signal, we proposed a feedback control method on the basis of the pressure drop database as the feedback control signal to eliminate the disturbance of periodic peak pressure impulse through the regulation of the opening ratio of a proportional flow valve and achieved the effective and stable electric power output, albeit intermittently. Compared with the previous complex control theories and algorithms, this method can keep the power output more stable over a wide range of operating conditions. Furthermore, experimental tests indicate that the IWEG system, with hydraulic PTO, including hydraulic accumulator and proportional flow control valve, is simple, reliable, and easy to control. Most importantly, the real-time power output is stable, and power quality and generation efficiency are significantly improved

    Dynamic Model of Signal Fading due to Swaying Vegetation

    Get PDF
    In this contribution, we use fading measurements at 2.45, 5.25, 29, and 60 GHz, and wind speed data, to study the dynamic effects of vegetation on propagating radiowaves. A new simulation model for generating signal fading due to a swaying tree has been developed by utilizing a multiple mass-spring system to represent a tree and a turbulent wind model. The model is validated in terms of the cumulative distribution function (CDF), autocorrelation function (ACF), level crossing rate (LCR), and average fade duration (AFD) using measurements. The agreements found between the measured and simulated first- and second-order statistics of the received signals through vegetation are satisfactory. In addition, Ricean K-factors for different wind speeds are estimated from measurements. Generally, the new model has similar dynamical and statistical characteristics as those observed in measurements and can thus be used for synthesizing signal fading due to a swaying tree. The synthesized fading can be used for simulating different capacity enhancing techniques such as adaptive coding and modulation and other fade mitigation techniques
    corecore