568 research outputs found
The impact of point mutations in the human androgen receptor : classification of mutations on the basis of transcriptional activity
Peer reviewedPublisher PD
Spacelike Singularities and Hidden Symmetries of Gravity
We review the intimate connection between (super-)gravity close to a
spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody
algebras. We show that in this limit the gravitational theory can be
reformulated in terms of billiard motion in a region of hyperbolic space,
revealing that the dynamics is completely determined by a (possibly infinite)
sequence of reflections, which are elements of a Lorentzian Coxeter group. Such
Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras,
suggesting that these algebras yield symmetries of gravitational theories. Our
presentation is aimed to be a self-contained and comprehensive treatment of the
subject, with all the relevant mathematical background material introduced and
explained in detail. We also review attempts at making the infinite-dimensional
symmetries manifest, through the construction of a geodesic sigma model based
on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case
of the hyperbolic algebra E10, which is conjectured to be an underlying
symmetry of M-theory. Illustrations of this conjecture are also discussed in
the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added.
Published versio
Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies
The unpalatable and warning-patterned butterflies _Heliconius erato_ and _Heliconius melpomene_ provide the best studied example of mutualistic Müllerian mimicry, thought – but rarely demonstrated – to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and this was initially hailed as the most striking known case of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of _H. erato_ and _H. melpomene_, supporting repeated codivergence of mimetic populations. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of _H. erato_ and _H. melpomene_ occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. This evidence supports a history of reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change
Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4
An extensive theoretical study is performed for wide bandgap crystalline
oxides and nitrides, namely, SiO_{2}, GeO_{2}, Al_{2}O_{3}, Si_{3}N_{4}, and
Ge_{3}N_{4}. Their important polymorphs are considered which are for SiO_{2}:
-quartz, - and -cristobalite and stishovite, for
GeO_{2}: -quartz, and rutile, for Al_{2}O_{3}: -phase, for
Si_{3}N_{4} and Ge_{3}N_{4}: - and -phases. This work
constitutes a comprehensive account of both electronic structure and the
elastic properties of these important insulating oxides and nitrides obtained
with high accuracy based on density functional theory within the local density
approximation. Two different norm-conserving \textit{ab initio}
pseudopotentials have been tested which agree in all respects with the only
exception arising for the elastic properties of rutile GeO_{2}. The agreement
with experimental values, when available, are seen to be highly satisfactory.
The uniformity and the well convergence of this approach enables an unbiased
assessment of important physical parameters within each material and among
different insulating oxide and nitrides. The computed static electric
susceptibilities are observed to display a strong correlation with their mass
densities. There is a marked discrepancy between the considered oxides and
nitrides with the latter having sudden increase of density of states away from
the respective band edges. This is expected to give rise to excessive carrier
scattering which can practically preclude bulk impact ionization process in
Si_{3}N_{4} and Ge_{3}N_{4}.Comment: Published version, 10 pages, 8 figure
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Opportunities for Process Control and Quality Assurance Using Online NIR Analysis to a Continuous Wet Granulation Tableting Line
This paper investigates the application of online near-infrared measurements as a means to measure blend uniformity in a continuous tableting line. Underlying all the monitoring and control methods is the ability to measure key tablet properties online at a rate suitable for control purposes. The use of NIR to determine any deviations in blend uniformity is demonstrated by interpreting the relevant spectral signature allowing quantitative information to be acquired for process monitoring and quality assurance. In addition to demonstrating the functionality of the NIR probe, the practical issues arising in the application are discussed. The composition of the blend was measured using an NIR probe over a range of concentrations and the results were calculated comparing sub unit dose scale of scrutiny of small populations. This was compared with predicted product quality for whole tablets over the whole production period. This technique has demonstrated how data collected online can be used to successfully predict the quality of the whole production run for the purposes of real-time product quality assurance
Effect of cellular and extracellular pathology assessed by T1 mapping on regional contractile function in hypertrophic cardiomyopathy
Background Regional contractile dysfunction is a frequent finding in hypertrophic cardiomyopathy (HCM). We aimed to investigate the contribution of different tissue characteristics in HCM to regional contractile dysfunction. Methods We prospectively recruited 50 patients with HCM who underwent cardiovascular magnetic resonance (CMR) studies at 3.0 T including cine imaging, T1 mapping and late gadolinium enhancement (LGE) imaging. For each segment of the American Heart Association model segment thickness, native T1, extracellular volume (ECV), presence of LGE and regional strain (by feature tracking and tissue tagging) were assessed. The relationship of segmental function, hypertrophy and tissue characteristics were determined using a mixed effects model, with random intercept for each patient. Results Individually segment thickness, native T1, ECV and the presence of LGE all had significant associations with regional strain. The first multivariable model (segment thickness, LGE and ECV) demonstrated that all strain parameters were associated with segment thickness (P < 0.001 for all) but not ECV. LGE (Beta 2.603, P = 0.024) had a significant association with circumferential strain measured by tissue tagging. In a second multivariable model (segment thickness, LGE and native T1) all strain parameters were associated with both segment thickness (P < 0.001 for all) and native T1 (P < 0.001 for all) but not LGE. Conclusion Impairment of contractile function in HCM is predominantly associated with the degree of hypertrophy and native T1 but not markers of extracellular fibrosis (ECV or LGE). These findings suggest that impairment of contractility in HCM is mediated by mechanisms other than extracellular expansion that include cellular changes in structure and function. The cellular mechanisms leading to increased native T1 and its prognostic significance remain to be established
Multinational development and validation of an early prediction model for delirium in ICU patients
Rationale
Delirium incidence in intensive care unit (ICU) patients is high and associated with poor outcome. Identification of high-risk patients may facilitate its prevention.
Purpose
To develop and validate a model based on data available at ICU admission to predict delirium development during a patient’s complete ICU stay and to determine the predictive value of this model in relation to the time of delirium development.
Methods
Prospective cohort study in 13 ICUs from seven countries. Multiple logistic regression analysis was used to develop the early prediction (E-PRE-DELIRIC) model on data of the first two-thirds and validated on data of the last one-third of the patients from every participating ICU.
Results
In total, 2914 patients were included. Delirium incidence was 23.6 %. The E-PRE-DELIRIC model consists of nine predictors assessed at ICU admission: age, history of cognitive impairment, history of alcohol abuse, blood urea nitrogen, admission category, urgent admission, mean arterial blood pressure, use of corticosteroids, and respiratory failure. The area under the receiver operating characteristic curve (AUROC) was 0.76 [95 % confidence interval (CI) 0.73–0.77] in the development dataset and 0.75 (95 % CI 0.71–0.79) in the validation dataset. The model was well calibrated. AUROC increased from 0.70 (95 % CI 0.67–0.74), for delirium that developed 6 days.
Conclusion
Patients’ delirium risk for the complete ICU length of stay can be predicted at admission using the E-PRE-DELIRIC model, allowing early preventive interventions aimed to reduce incidence and severity of ICU delirium
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
- …
