193 research outputs found

    Novel multi-port converter for distributed MPPT operation in solar PV system

    Get PDF
    Solar photovoltaic (PV) systems continue to be the most prevalent renewable energy resource despite the presence of numerous limitations. A power discrepancy between PV modules on a large scale may result in power dissipation throughout the entire PV system. This particular paper proposes an efficient multi-port converter for distributed maximum power point tracking operation (D-MPPT) for a solar PV system. The operation details of the proposed multi-port converter along with analytical waveforms are presented in this paper. To implement the D-MPPT approach in the proposed multi-port converter, a detailed analysis of mathematical modeling of solar PV systems with a mismatch of PV power and voltage stabilization approach is done. In addition, the proposed approach eliminates the need for additional current sensors and semiconductor components to overcome the effect of mismatched power in the PV system. To validate this, the prototype has been built and integrated with the real environment of the solar PV system. To verify the operation, a detailed simulation study and experimental investigation have been carried out and presented in this paper which reveals that the proposed system offers 24% improved power extraction compared to the centralized converter and MPPT method under partially shaded conditions. After a detailed investigation and discussion of measured results and analysis, it is concluded that the proposed multi-port DC-DC converter is the most suitable solution for solar PV applications

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Therapeutic opportunities within the DNA damage response

    Get PDF
    The DNA damage response (DDR) is essential for maintaining the genomic integrity of the cell, and its disruption is one of the hallmarks of cancer. Classically, defects in the DDR have been exploited therapeutically in the treatment of cancer with radiation therapies or genotoxic chemotherapies. More recently, protein components of the DDR systems have been identified as promising avenues for targeted cancer therapeutics. Here, we present an in-depth analysis of the function, role in cancer and therapeutic potential of 450 expert-curated human DDR genes. We discuss the DDR drugs that have been approved by the US Food and Drug Administration (FDA) or that are under clinical investigation. We examine large-scale genomic and expression data for 15 cancers to identify deregulated components of the DDR, and we apply systematic computational analysis to identify DDR proteins that are amenable to modulation by small molecules, highlighting potential novel therapeutic targets

    Modulation of innate immune responses at birth by prenatal malaria exposure and association with malaria risk during the first year of life.

    Get PDF
    BACKGROUND: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS: These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life

    Bardet-Biedl syndrome with end-stage kidney disease in a four-year-old Romanian boy: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bardet-Biedl syndrome is a significant genetic cause of chronic kidney disease in children. Kidney abnormalities are a major cause of morbidity and mortality in Bardet-Biedl syndrome, but the onset of end-stage renal disease at an early age and continuous ambulatory peritoneal dialysis, however, are not commonly mentioned in the literature.</p> <p>Case presentation</p> <p>We present the case of a four-year-old Romanian boy who presented to our department with 'febrile seizures'. After an initial evaluation, we diagnosed our patient as having hypertension, severe anemia and end-stage renal disease. He met the major and minor criteria for the diagnosis of Bardet-Biedl syndrome and underwent continuous ambulatory peritoneal dialysis.</p> <p>Conclusions</p> <p>Close follow-up for renal involvement in patients with Bardet-Biedl syndrome and Alström syndrome from an early age is highly recommended to prevent end-stage renal disease and so renal replacement therapy can be started immediately.</p

    Choroidal melanoma metastasizing to maxillofacial bones

    Get PDF
    BACKGROUND: Melanomas are malignant neoplasm of melanocytic origin, commonly seen on skin and various mucous membranes. Melanomas are the commonest intraocular malignant tumour in the adults. CASE PRESENTATION: A 50-year-old female presented with complains of painless progressive swelling in right cheek region of two months duration. Examination revealed a 6 × 4 cm bony hard swelling in right zygomatic region near and below lateral canthus of right eye with loss of vision. Investigations revealed it to be a choroidal melanoma metastatising to the zygomatic bone. Patient was successfully treated by surgery. CONCLUSION: Choroidal melanoma, which commonly metastasizes to liver and lungs, never involves the lymph nodes and metastasis to facial bones is rare. Here we report a case of choroidal melanoma metastasizing to maxillofacial bones

    Direct Ubiquitin Independent Recognition and Degradation of a Folded Protein by the Eukaryotic Proteasomes-Origin of Intrinsic Degradation Signals

    Get PDF
    Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases. Apomyoglobin emerges as a new model substrate to further explore the role of ATPases and protein structure in proteasomal degradatio
    corecore