10,489 research outputs found

    Diquarks in the color--flavor locked phase of dense quark matter

    Full text link
    Diquark excitations of dense quark matter are considered in the framework of the Nambu -- Jona-Lasinio model with three types of massless quarks in the presense of a quark number chemical potential μ\mu. We investigate the effective action of meson- and diquark fields at sufficiently high values of μ\mu, where the color--flavor locked (CFL) phase is realized, and prove the existence of NG-bosons in the sector of pseudoscalar diquarks. In the sector of scalar diquarks an additional NG-boson is found, corresponding to the spontaneous breaking of the U(1)B_B baryon symmetry in the CFL phase. Finally, the existence of massive scalar and pseudoscalar diquark excitations is demonstrated.Comment: 10 pages, 2 figures; version accepted for publication in PR

    The Momentum--Space Bosonization of the Nambu--Jona-Lasinio Model with Vector and Axial-Vector Mesons

    Full text link
    The momentum-space bosonization method is extended to the case of a Nambu--Jona-Lasinio type model with vector and axial-vector mesons. The method presented gives the possibility of deriving any meson vertex function to all orders in momenta and to the leading order in 1/Nc1/N_c. Two-point functions, which describe one-particle transitions to the hadronic vacuum, and meson self-energies are considered. We find new relations which generalize the well-known KSFR relation and both the first and the second Weinberg sum rules. These result from a consistent treatment of higher order terms in the momentum expansion.Comment: 11pp, TeX, CRN 93-5

    Mesons and diquarks in neutral color superconducting quark matter with β\beta-equilibrium

    Get PDF
    The spectrum of meson and diquark excitations in cold color-superconducting (2SC) quark matter is investigated under local color and electric neutrality constraints with β\beta-equilibrium. A 2-flavored Nambu--Jona-Lasinio type model including a baryon μB\mu_B, color μ8\mu_8, and electric μQ\mu_Q chemical potentials is used. Two relations between coupling constants HH and GG in the diquark- and quark-antiquark channels, correspondingly, are treated, H=3G/4H=3G/4 and H=GH=G. At H=3G/4H=3G/4 the gapless- and at H=GH=G the gapped neutral color superconductivity is realized. It is shown that color and electrical neutrality together with β\beta-equilibrium lead to a strong mass splitting within the pion isotriplet in the 2SC phase (both gapped and gapless), in contrast with non--neutral matter. It is also shown that the properties of the physical SU(2)cSU(2)_c-singlet diquark excitation in the 2SC ground state varies for different parameterization schemes. Thus, for H=3G/4H=3G/4 one finds a heavy resonance with mass \sim 1100 MeV in the non--neutral (gapped) case, whereas, if neutrality is imposed, a stable diquark with mass μQ\sim\mu_Q\sim 200 MeV appears in the gapless 2SC phase. For H=GH=G, there is again a resonance (with the mass \sim 300 MeV) in the neutral gapped 2SC phase. Hence, the existence of the stable massive SU(2)c_c-singlet diquark excitation is a new peculiarity of the gapless 2SC.Comment: 18 pages, 9 figures; version accepted for publication in PR

    Bosonization in Particle Physics

    Get PDF
    Path integral techniques in collective fields are shown to be a useful analytical tool to reformulate a field theory defined in terms of microscopic quark (gluon) degrees of freedom as an effective theory of collective boson (meson) fields. For illustrations, the path integral bosonization approach is applied to derive a (non)linear sigma model from a Nambu-Jona-Lasinio (NJL) quark model. The method can be extended to include higher order derivative terms in meson fields or heavy-quark symmetries. It is also approximately applicable to QCD.Comment: 12 pages, LaTeX, uses lamuphys.sty, 5 LaTeX figures, talk given at the Workshop "Field Theoretical Tools in Polymer and Particle Physics", University Wuppertal, June 17-19, 199

    Symmetric Versus Nonsymmetric Structure of the Phosphorus Vacancy on InP(110)

    Full text link
    The atomic and electronic structure of positively charged P vacancies on InP(110) surfaces is determined by combining scanning tunneling microscopy, photoelectron spectroscopy, and density-functional theory calculations. The vacancy exhibits a nonsymmetric rebonded atomic configuration with a charge transfer level 0.75+-0.1 eV above the valence band maximum. The scanning tunneling microscopy (STM) images show only a time average of two degenerate geometries, due to a thermal flip motion between the mirror configurations. This leads to an apparently symmetric STM image, although the ground state atomic structure is nonsymmetric.Comment: 5 pages including 3 figures. related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
    corecore