196 research outputs found

    Comparative antimicrobial susceptibility of aerobic and facultative bacteria from community-acquired bacteremia to ertapenem in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ertapenem is a once-a-day carbapenem and has excellent activity against many gram-positive and gram-negative aerobic, facultative, and anaerobic bacteria. The susceptibility of isolates of community-acquired bacteremia to ertapenem has not been reported yet. The present study assesses the in vitro activity of ertapenem against aerobic and facultative bacterial pathogens isolated from patients with community-acquired bacteremia by determining and comparing the MICs of cefepime, cefoxitin, ceftazidime, ceftriaxone, ertapenem, piperacillin, piperacillin-tazobactam, ciprofloxacin, amikacin and gentamicin. The prevalence of extended broad spectrum β-lactamases (ESBL) producing strains of community-acquired bacteremia and their susceptibility to these antibiotics are investigated.</p> <p>Methods</p> <p>Aerobic and facultative bacteria isolated from blood obtained from hospitalized patients with community-acquired bacteremia within 48 hours of admission between August 1, 2004 and September 30, 2004 in Chang Gung Memorial Hospital at Keelung, Taiwan, were identified using standard procedures. Antimicrobial susceptibility was evaluated by Etest according to the standard guidelines provided by the manufacturer and document M100-S16 Performance Standards of the Clinical Laboratory of Standard Institute. Antimicrobial agents including cefepime, cefoxitin, ceftazidime, ceftriaxone, ertapenem, piperacillin, piperacillin-tazobactam, ciprofloxacin, amikacin and gentamicin were used against the bacterial isolates to test their MICs as determined by Etest. For <it>Staphylococcus aureus </it>isolates, MICs of oxacillin were also tested by Etest to differentiate oxacillin-sensitive and oxacillin-resistant <it>S. aureus</it>.</p> <p>Results</p> <p>Ertapenem was highly active in vitro against many aerobic and facultative bacterial pathogens commonly recovered from patients with community-acquired bacteremia (128/159, 80.5 %). Ertapenem had more potent activity than ceftriaxone, piperacillin-tazobactam, or ciprofloxacin against oxacillin-susceptible <it>S</it>. <it>aureus </it>(17/17, 100%)and was more active than any of these agents against <it>enterobacteriaceae </it>(82/82, 100%).</p> <p>Conclusion</p> <p>Based on the microbiology pattern of community-acquired bacteremia, initial empiric treatment that requires coverage of a broad spectrum of both gram-negative and gram-positive aerobic bacteria, such as ertapenem, may be justified in moderately severe cases of community-acquired bacteremia in non-immunocompromised hosts.</p

    Comparative Proteomic Analysis of Lung Lamellar Bodies and Lysosome-Related Organelles

    Get PDF
    Pulmonary surfactant is a complex mixture of lipids and proteins that is essential for postnatal function. Surfactant is synthesized in alveolar type II cells and stored as multi-bilayer membranes in a specialized secretory lysosome-related organelle (LRO), known as the lamellar body (LB), prior to secretion into the alveolar airspaces. Few LB proteins have been identified and the mechanisms regulating formation and trafficking of this organelle are poorly understood. Lamellar bodies were isolated from rat lungs, separated into limiting membrane and core populations, fractionated by SDS-PAGE and proteins identified by nanoLC-tandem mass spectrometry. In total 562 proteins were identified, significantly extending a previous study that identified 44 proteins in rat lung LB. The lung LB proteome reflects the dynamic interaction of this organelle with the biosynthetic, secretory and endocytic pathways of the type II epithelial cell. Comparison with other LRO proteomes indicated that 60% of LB proteins were detected in one or more of 8 other proteomes, confirming classification of the LB as a LRO. Remarkably the LB shared 37.8% of its proteins with the melanosome but only 9.9% with lamellar bodies from the skin. Of the 229 proteins not detected in other LRO proteomes, a subset of 34 proteins was enriched in lung relative to other tissues. Proteins with lipid-related functions comprised a significant proportion of the LB unique subset, consistent with the major function of this organelle in the organization, storage and secretion of surfactant lipid. The lung LB proteome will facilitate identification of molecular pathways involved in LB biogenesis, surfactant homeostasis and disease pathogenesis

    The transcriptional landscape of endogenous retroelements delineates esophageal adenocarcinoma subtypes

    Get PDF
    Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies

    Rearrangement processes and structural variations show evidence of selection in oesophageal adenocarcinomas

    Get PDF
    Oesophageal adenocarcinoma (OAC) provides an ideal case study to characterize large-scale rearrangements. Using whole genome short-read sequencing of 383 cases, for which 214 had matched whole transcriptomes, we observed structural variations (SV) with a predominance of deletions, tandem duplications and inter-chromosome junctions that could be identified as LINE-1 mobile element (ME) insertions. Complex clusters of rearrangements resembling breakage-fusion-bridge cycles or extrachromosomal circular DNA accounted for 22% of complex SVs affecting known oncogenes. Counting SV events affecting known driver genes substantially increased the recurrence rates of these drivers. After excluding fragile sites, we identified 51 candidate new drivers in genomic regions disrupted by SVs, including ETV5, KAT6B and CLTC. RUNX1 was the most recurrently altered gene (24%), with many deletions inactivating the RUNT domain but preserved the reading frame, suggesting an altered protein product. These findings underscore the importance of identification of SV events in OAC with implications for targeted therapies

    Context-dependent effects of CDKN2A and other 9p21 gene losses during the evolution of esophageal cancer

    Get PDF
    CDKN2A is a tumor suppressor located in chromosome 9p21 and frequently lost in Barrett’s esophagus (BE) and esophageal adenocarcinoma (EAC). How CDKN2A and other 9p21 gene co-deletions affect EAC evolution remains understudied. We explored the effects of 9p21 loss in EACs and cancer progressor and non-progressor BEs with matched genomic, transcriptomic and clinical data. Despite its cancer driver role, CDKN2A loss in BE prevents EAC initiation by counterselecting subsequent TP53 alterations. 9p21 gene co-deletions predict poor patient survival in EAC but not BE through context-dependent effects on cell cycle, oxidative phosphorylation and interferon response. Immune quantifications using bulk transcriptome, RNAscope and high-dimensional tissue imaging showed that IFNE loss reduces immune infiltration in BE, but not EAC. Mechanistically, CDKN2A loss suppresses the maintenance of squamous epithelium, contributing to a more aggressive phenotype. Our study demonstrates context-dependent roles of cancer genes during disease evolution, with consequences for cancer detection and patient management

    Therapeutic targeting of CK2 in acute and chronic leukemias

    Get PDF
    Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Thus, proper regulation of phosphorylation events is critical to the homeostatic functions of cell signaling. Indeed, deregulation of signaling pathways underlies many human diseases, including cancer.[1] The importance of phosphorylation makes protein kinases and phosphatases promising therapeutic targets for a wide variety of disorders.[2] CK2, formerly known as casein kinase II, was discovered in 1954, [3] although only recently, and especially over the last two decades, it has become one of the most studied protein kinases, due to its ubiquity, pleiotropy and constitutive activity. In particular, appreciation of its pleiotropy has completely changed our vision of CK2 biology, from an ordinary cell homeostasis-maintaining enzyme to a master kinase potentially implicated in many human physiological and pathological events. CK2 is responsible for about 25% of the phosphoproteome,[4] as it catalyzes the phosphorylation of >300 substrates.[5] This partly explains the CK2 interconnected roles that underlie its involvement in many signaling pathways. However, CK2 prevalent roles are promotion of cell growth and suppression of apoptosis. Accordingly, several lines of evidence support the notion that CK2 is a key player in the pathogenesis of cancer. High levels of CK2 transcript and protein expression, as well as increased kinase activity are associated with the pathological functions of CK2 in a number of neoplasias.[6] It was only over the last decade, after extensive analyses in solid tumors, that basic and translational studies have provided evidence for a pivotal role of CK2 in driving the growth of different blood cancers as well, although the first report demonstrating increased CK2 expression in acute myelogenous leukemia (AML) dates back to 1985.[7] Since then, CK2 overexpression/activity has been demonstrated in other hematological malignancies, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelogenous leukemia (CML). [8] With the notable exceptions of CML and pediatric ALL, many patients with leukemias still have a poor outcome, despite the development of protocols with optimized chemotherapy combinations. Insufficient response to first-line therapy and unsalvageable relapses present major therapeutic challenges. Moreover, chemotherapy, even if successful, could have deleterious long-term biological and psychological effects, especially in children.[9] Furthermore, CML patients can develop resistance to tyrosine kinase inhibitors (TKIs), while both primary chemoresistant and relapsed pediatric ALL cases still remain an unresolved issue.[9

    Panel 7: otitis media:treatment and complications

    Get PDF
    Objective: We aimed to summarize key articles published between 2011 and 2015 on the treatment of (recurrent) acute otitis media, otitis media with effusion, tympanostomy tube otorrhea, chronic suppurative otitis media and complications of otitis media, and their implications for clinical practice. Data Sources: PubMed, Ovid Medline, the Cochrane Library, and Clinical Evidence (BMJ Publishing). Review Methods: All types of articles related to otitis media treatment and complications between June 2011 and March 2015 were identified. A total of 1122 potential related articles were reviewed by the panel members; 118 relevant articles were ultimately included in this summary. Conclusions: Recent literature and guidelines emphasize accurate diagnosis of acute otitis media and optimal management of ear pain. Watchful waiting is optional in mild to moderate acute otitis media; antibiotics do shorten symptoms and duration of middle ear effusion. The additive benefit of adenoidectomy to tympanostomy tubes in recurrent acute otitis media and otitis media with effusion is controversial and age dependent. Topical antibiotic is the treatment of choice in acute tube otorrhea. Symptomatic hearing loss due to persistent otitis media with effusion is best treated with tympanostomy tubes. Novel molecular and biomaterial treatments as adjuvants to surgical closure of eardrum perforations seem promising. There is insufficient evidence to support the use of complementary and alternative treatments. Implications for Practice: Emphasis on accurate diagnosis of otitis media, in its various forms, is important to reduce overdiagnosis, overtreatment, and antibiotic resistance. Children at risk for otitis media and its complications deserve special attention

    Managing aflatoxin in smallholder groundnut production in Southern Africa: Paired comparison of the windrow and Mandela cock techniques

    Get PDF
    Timely drying of groundnuts is important after harvest. In most parts of sub-Saharan Africa, moisture content reduction is practically achieved by solar drying. In particular, the groundnuts are traditionally cured in the field using the inverted windrow drying technique. Recently, the Mandela cock technique, a ventilated stack of groundnut plants with a chimney at the center, has been introduced in the southern Africa region with the aim of reducing moisture content and the risk of aflatoxin contamination. An on-farm study was conducted in Malawi to compare the effectiveness of the Mandela cock and Windrow drying techniques with respect to aflatoxin control. For two consecutive years, farmers (2016, n = 29; 2017; n = 26) were recruited to test each of the two drying techniques. A mixed-design ANOVA showed that the Mandela cock groundnut drying technique led to sig- nificantly (p < 0.001) higher aflatoxin levels in groundnut seed compared to the traditional inverted windrow drying (5.7 μg/kg, geometric mean vs 2.5 μg/kg in 2016 and 37.6 μg/kg vs 8.4 μg/kg in 2017). The present findings clearly demonstrate the need for regulation and technology validation if farmers and consumers are to benefit
    corecore