1,744 research outputs found

    Genetic programming for cellular automata urban inundation modelling

    Get PDF
    Session S5-02, Special Session: Computational Intelligence in Data Driven and Hybrid Models and Data Analysis IIRecent advances in Cellular Automata (CA) represent a new, computationally efficient method of simulating flooding in urban areas. A number of recent publications in this field have shown that CAs can be much more computationally efficient than methods that use standard shallow water equations (Saint Venant/Navier-Stokes equations). CAs operate using local statetransition rules that determine the progression of the flow from one cell in the grid to another cell, and in a number of publications the Manning’s Formula is used as a simplified local state transition rule. Through the distributed interactions of the CA, computationally simplified urban flooding can be simulated, although these methods are limited by the approximation represented by the Manning’s formula. An alternative approach is to learn the state transition rule using an artificial intelligence approach. One such approach is Genetic Programming (GP) that has the potential to be used to optimise state transition rules to maximise accuracy and minimise computation time. In this paper we present some preliminary findings on the use of genetic programming (GP) for deriving these rules automatically. The experimentation compares GP-derived rules with human created solutions based on the Manning’s formula and findings indicate that the GP rules can improve on these approach

    Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance

    Get PDF
    Trypanosoma brucei rhodesiense (Tbr) and T. b. gambiense (Tbg), causative agents of Human African Trypanosomiasis (sleeping sickness) in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs), components of innate immunity in human serum that protect against infection by other African trypanosomes. In Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA) protein. The mechanism in Tbg is less well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin receptor (HpHbR). HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb), a member of the T. brucei species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is conserved in the most widespread form of Tbg (Tbg group 1) and not found in related taxa, which are either human serum susceptible (Tbb) or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2). We hypothesize that this single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that human serum resistance in Tbg group 2 is likely independent of HpHbR functio

    Managing healthcare budgets in times of austerity: the role of program budgeting and marginal analysis

    Get PDF
    Given limited resources, priority setting or choice making will remain a reality at all levels of publicly funded healthcare across countries for many years to come. The pressures may well be even more acute as the impact of the economic crisis of 2008 continues to play out but, even as economies begin to turn around, resources within healthcare will be limited, thus some form of rationing will be required. Over the last few decades, research on healthcare priority setting has focused on methods of implementation as well as on the development of approaches related to fairness and legitimacy and on more technical aspects of decision making including the use of multi-criteria decision analysis. Recently, research has led to better understanding of evaluating priority setting activity including defining ‘success’ and articulating key elements for high performance. This body of research, however, often goes untapped by those charged with making challenging decisions and as such, in line with prevailing public sector incentives, decisions are often reliant on historical allocation patterns and/or political negotiation. These archaic and ineffective approaches not only lead to poor decisions in terms of value for money but further do not reflect basic ethical conditions that can lead to fairness in the decision-making process. The purpose of this paper is to outline a comprehensive approach to priority setting and resource allocation that has been used in different contexts across countries. This will provide decision makers with a single point of access for a basic understanding of relevant tools when faced with having to make difficult decisions about what healthcare services to fund and what not to fund. The paper also addresses several key issues related to priority setting including how health technology assessments can be used, how performance can be improved at a practical level, and what ongoing resource management practice should look like. In terms of future research, one of the most important areas of priority setting that needs further attention is how best to engage public members

    Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria

    Get PDF
    The similarity in the genetic regulation of arthropod and vertebrate appendage formation has been interpreted as the product of a plesiomorphic gene network that was primitively involved in bilaterian appendage development and co-opted to build appendages (in modern phyla) that are not historically related as structures. Data from lophotrochozoans are needed to clarify the pervasiveness of plesiomorphic appendage forming mechanisms. We assayed the expression of three arthropod and vertebrate limb gene orthologs, Distal-less (Dll), dachshund (dac), and optomotor blind (omb), in direct-developing juveniles of the polychaete Neanthes arenaceodentata. Parapodial Dll expression marks premorphogenetic notopodia and neuropodia, becoming restricted to the bases of notopodial cirri and to ventral portions of neuropodia. In outgrowing cephalic appendages, Dll activity is primarily restricted to proximal domains. Dll expression is also prominent in the brain. dac expression occurs in the brain, nerve cord ganglia, a pair of pharyngeal ganglia, presumed interneurons linking a pair of segmental nerves, and in newly differentiating mesoderm. Domains of omb expression include the brain, nerve cord ganglia, one pair of anterior cirri, presumed precursors of dorsal musculature, and the same pharyngeal ganglia and presumed interneurons that express dac. Contrary to their roles in outgrowing arthropod and vertebrate appendages, Dll, dac, and omb lack comparable expression in Neanthes appendages, implying independent evolution of annelid appendage development. We infer that parapodia and arthropodia are not structurally or mechanistically homologous (but their primordia might be), that Dll’s ancestral bilaterian function was in sensory and central nervous system differentiation, and that locomotory appendages possibly evolved from sensory outgrowths
    corecore