17 research outputs found

    Advancing bioenergetics-based modeling to improve climate change projections of marine ecosystems

    Get PDF
    Climate change has rapidly altered marine ecosystems and is expected to continue to push systems and species beyond historical baselines into novel conditions. Projecting responses of organisms and populations to these novel environmental conditions often requires extrapolations beyond observed conditions, challenging the predictive limits of statistical modeling capabilities. Bioenergetics modeling provides the mechanistic basis for projecting climate change effects on marine living resources in novel conditions, has a long history of development, and has been applied widely to fish and other taxa. We provide our perspective on 4 opportunities that will advance the ability of bioenergetics-based models to depict changes in the productivity and distribution of fishes and other marine organisms, leading to more robust projections of climate impacts. These are (1) improved depiction of bioenergetics processes to derive realistic individual-level response(s) to complex changes in environmental conditions, (2) innovations in scaling individual-level bioenergetics to project responses at the population and food web levels, (3) more realistic coupling between spatial dynamics and bioenergetics to better represent the local- to regional-scale differences in the effects of climate change on the spatial distributions of organisms, and (4) innovations in model validation to ensure that the next generation of bioenergetics-based models can be used with known and sufficient confidence. Our focus on specific opportunities will enable critical advancements in bioenergetics modeling and position the modeling community to make more accurate and robust projections of the effects of climate change on individuals, populations, food webs, and ecosystems

    Distribution and Habitat Associations of Billfish and Swordfish Larvae across Mesoscale Features in the Gulf of Mexico

    Get PDF
    Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006–2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m−2) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m−2), white marlin (5.44 larvae 1000 m−2), and swordfish (4.67 larvae 1000 m−2). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations

    The critical first year of life of walleye pollock (Gadus chalcogrammus) in the eastern Bering Sea: Implications for recruitment and future research

    No full text
    Walleye pollock (Gadus chalcogrammus) support a large commercial fishery in the eastern Bering Sea despite large interannual and decadal swings in population abundance. These oscillations challenge the fishery, prompting significant effort directed to understanding the species and its recruitment. Conceptual paradigms of walleye pollock recruitment recognize that understanding the factors affecting survivorship during the first year of life is central to understanding population fluctuation. Since the first year is critical to year-class strength of this key economically and ecologically important species, we review the state of knowledge of pre-recruit walleye pollock ecology in the eastern Bering Sea during this critical first-year period, including spawning, changes in vertical and horizontal distributions, feeding, growth, body condition, transport, and predation. We then critically examine the recruitment paradigms based on the component processes that have been proposed to explain mechanisms of recruitment control. We identify paradigm strengths or weaknesses relative to our current state of knowledge, discussing relevance and validity. Finally, we identify gaps in knowledge and propose areas of future research effort

    Wave-induced abiotic stress shapes phenotypic diversity in a coral reef fish across a geographical cline

    No full text
    While morphological variation across geographical clines has been well documented, it is often unclear whether such changes enhance individual performance to local environments. We examined whether the damselfish Acanthochromis polyacanthus display functional changes in swimming phenotype across a 40-km cline in wave-driven water motion on the Great Barrier Reef, Australia. A. polyacanthus populations displayed strong intraspecific variation in swimming morphology and performance that matched local levels of water motion: individuals on reefs subject to high water motion displayed higher aspect-ratio fins and faster swimming speeds than conspecifics on sheltered reefs. Remarkably, intraspecific variation within A. polyacanthus spanned over half the diversity seen among closely related damselfish species from the same region. We find that local selection driven by wave-induced abiotic stress is an overarching ecological mechanism shaping the inter- and intraspecific locomotor diversity of coral reef fishes

    Lexis Diagram and Illness-Death Model: Simulating Populations in Chronic Disease Epidemiology

    No full text
    Chronic diseases impose a tremendous global health problem of the 21st century. Epidemiological and public health models help to gain insight into the distribution and burden of chronic diseases. Moreover, the models may help to plan appropriate interventions against risk factors. To provide accurate results, models often need to take into account three different time-scales: calendar time, age, and duration since the onset of the disease. Incidence and mortality often change with age and calendar time. In many diseases such as, for example, diabetes and dementia, the mortality of the diseased persons additionally depends on the duration of the disease. The aim of this work is to describe an algorithm and a flexible software framework for the simulation of populations moving in an illness-death model that describes the epidemiology of a chronic disease in the face of the different times-scales. We set up a discrete event simulation in continuous time involving competing risks using the freely available statistical software R. Relevant events are birth, the onset (or diagnosis) of the disease and death with or without the disease. The Lexis diagram keeps track of the different time-scales. Input data are birth rates, incidence and mortality rates, which can be given as numerical values on a grid. The algorithm manages the complex interplay between the rates and the different time-scales. As a result, for each subject in the simulated population, the algorithm provides the calendar time of birth, the age of onset of the disease (if the subject contracts the disease) and the age at death. By this means, the impact of interventions may be estimated and compared
    corecore