5,527 research outputs found
Recommended from our members
The Next Big Match: Convergence, Competition and Sports Media Rights
Using examples from a number of different European countries, this article analyses the increasingly prominent position of traditional telecommunications companies, such as British Telecom (UK), Deutsche Telekom (Germany), France Telecom/Orange (France) and Telefonica (Spain), in the contemporary sports media rights market. The first part of the article examines the commercial strategies of telecommunications operators and highlights how their acquisition of sports rights has been driven by the need to ensure a competitive position within an increasingly converged communications market. The second part of the article then moves on to consider the regulation of the sports media rights market. Most significantly, this section emphasises the need for further regulatory intervention to ensure that increased competition for sports rights leads to improved services and lower prices for consumers, rather than merely endlessly spiralling fees for the exclusive ownership of premium rights that are then passed on to sports channel and/or broadband subscribers
Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.
Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy
Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity
The Publisher's final version can be found by following the DOI link. open access articleWith the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity
Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains
peer-reviewedOpportunities for exploiting the inherent value of protein-rich meat processing co-products, in the context of increased global demand for protein and for sustainable processing systems, are discussed. While direct consumption maybe the most profitable route for some, this approach is influenced greatly by local and cultural traditions. A more profitable and sustainable approach may be found in recognizing this readily available and under-utilised resource can provide high value components, such as proteins, with targeted high value functionality of relevance to a variety of sectors. Applications in food & beverages, petfood biomedical and nutrition arenas are discussed. Utilization of the raw material in its entirety is a necessary underlying principle in this approach to help maintain minimum waste generation. Understanding consumer attitudes to these products, in particular when used in food or beverage systems, is critical in optimizing commercialization strategies.This work forms part of the ReValueProtein Research Project (Grant Award No. 11/F/043) which is supported by the Irish Department of Agriculture, Food and the Marine (DAFM) and the Food Institutional Research Measure (FIRM) both funded by the Irish Government under the National Development Plan 2007–2013.Department of Agriculture, Food and the Marin
Climate change adaptation, flood risks and policy coherence in integrated water resources management in England
Integrated water resources management (IWRM) assumes coherence between cognate aspects of water governance at the river basin scale, for example water quality, energy production and agriculture objectives. But critics argue that IWRM is often less ‘integrated’ in practice, raising concerns over inter-sectoral coherence between implementing institutions. One increasingly significant aspect of IWRM is adaptation to climate change-related risks, including threats from flooding, which are particularly salient in England. Although multiple institutional mechanisms exist for flood risk management (FRM), their coherence remains a critical question for national adaptation. This paper therefore (1) maps the multi-level institutional frameworks determining both IWRM and FRM in England; (2) examines their interaction via various inter-institutional coordinating mechanisms; and (3) assesses the degree of coherence. The analysis suggests that cognate EU strategic objectives for flood risk assessment demonstrate relatively high vertical and horizontal coherence with river basin planning. However, there is less coherence with flood risk requirements for land-use planning and national flood protection objectives. Overall, this complex governance arrangement actually demonstrates de-coherence over time due to ongoing institutional fragmentation. Recommendations for increasing IWRM coherence in England or re-coherence based on greater spatial planning and coordination of water-use and land-use strategies are proposed
Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study
BACKGROUND: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. RESULTS: The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. CONCLUSIONS: Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens
Adaptive Evolution of the Myo6 Gene in Old World Fruit Bats (Family: Pteropodidae)
PMCID: PMC3631194This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Consistency and diversity of spike dynamics in the neurons of bed nucleus of Stria Terminalis of the rat: a dynamic clamp study
Neurons display a high degree of variability and diversity in the expression and regulation of their voltage-dependent ionic channels. Under low level of synaptic background a number of physiologically distinct cell types can be identified in most brain areas that display different responses to standard forms of intracellular current stimulation. Nevertheless, it is not well understood how biophysically different neurons process synaptic inputs in natural conditions, i.e., when experiencing intense synaptic bombardment in vivo. While distinct cell types might process synaptic inputs into different patterns of action potentials representing specific "motifs'' of network activity, standard methods of electrophysiology are not well suited to resolve such questions. In the current paper we performed dynamic clamp experiments with simulated synaptic inputs that were presented to three types of neurons in the juxtacapsular bed nucleus of stria terminalis (jcBNST) of the rat. Our analysis on the temporal structure of firing showed that the three types of jcBNST neurons did not produce qualitatively different spike responses under identical patterns of input. However, we observed consistent, cell type dependent variations in the fine structure of firing, at the level of single spikes. At the millisecond resolution structure of firing we found high degree of diversity across the entire spectrum of neurons irrespective of their type. Additionally, we identified a new cell type with intrinsic oscillatory properties that produced a rhythmic and regular firing under synaptic stimulation that distinguishes it from the previously described jcBNST cell types. Our findings suggest a sophisticated, cell type dependent regulation of spike dynamics of neurons when experiencing a complex synaptic background. The high degree of their dynamical diversity has implications to their cooperative dynamics and synchronization
Inverse Association between trans Isomeric and Long-Chain Polyunsaturated Fatty Acids in Pregnant Women and Their Newborns: Data from Three European Countries
Background: trans unsaturated fatty acids are thought to interfere with essential fatty acid metabolism. To extend our knowledge of this phenomenon, we investigated the relationship between trans isomeric and long-chain polyunsaturated fatty acids (LCPUFA) in mothers during pregnancy and in their infants at birth. Methods: Fatty acid composition of erythrocyte phosphatidylcholine (PC) and phosphatidylethanolamine (PE) was determined in Spanish (n = 120), German (n = 78) and Hungarian (n = 43) women at the 20th and 30th week of gestation, at delivery and in their newborns. Results: At the 20th week of gestation, the sum of trans fatty acids in PE was significantly (p < 0.01) lower in Hungarian [0.73 (0.51), % wt/wt, median (IQR)] than in Spanish [1.42 (1.36)] and German [1.30 (1.21)] women. Docosahexaenoic acid (DHA) values in PE were significantly (p < 0.01) higher in Hungarian {[}5.65 (2.09)] than in Spanish [4.37 (2.60)] or German [4.39 (3.3.2)] women. The sum of trans fatty acids significantly inversely correlated to DHA in PCs in Spanish (r = -0.37, p < 0.001), German (n = -0.77, p < 0.001) and Hungarian (r = -0.35, p < 0.05) women, and in PEs in Spanish (r = -0.67, p < 0.001) and German (r = -0.71, p < 0.001), but not in Hungarian (r = -0.02) women. Significant inverse correlations were seen between trans fatty acids and DHA in PEs at the 30th week of gestation (n = 241, r = -0.52, p < 0.001), at delivery (n = 241, r = -0.40, p < 0.001) and in cord lipids (n = 218, r = -0.28, p < 0.001). Conclusion: Because humans cannot synthesize trans isomeric fatty acids, the data obtained in the present study support the concept that high maternal trans isomeric fatty acid intake may interfere with the availability of LCPUFA both for the mother and the fetus. Copyright (C) 2011 S. Karger AG, Base
Visual ecology of aphids – a critical review on the role of colours in host finding
We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms.
Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region.
We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours
that are not likely to hold. Finally we also discuss the
implications for developing and optimising strategies
of aphid control and monitoring
- …
