8,883 research outputs found
Methods to model and predict the ViewRay treatment deliveries to aid patient scheduling and treatment planning
The neonicotinoid insecticide Imidacloprid repels pollinating flies and beetles at field-realistic concentrations
Neonicotinoids are widely used systemic insecticides which, when applied to flowering crops, are translocated to the nectar and pollen where they may impact upon pollinators. Given global concerns over pollinator declines, this potential impact has recently received much attention. Field exposure of pollinators to neonicotinoids depends on the concentrations present in flowering crops and the degree to which pollinators choose to feed upon them. Here we describe a simple experiment using paired yellow pan traps with or without insecticide to assess whether the commonly used neonicotinoid imidacloprid repels or attracts flying insects. Both Diptera and Coleoptera exhibited marked avoidance of traps containing imidacloprid at a field-realistic dose of 1 μg L-1, with Diptera avoiding concentrations as low as 0.01 μg L-1. This is to our knowledge the first evidence for any biological activity at such low concentrations, which are below the limits of laboratory detection using most commonly available techniques. Catch of spiders in pan traps was also slightly reduced by the highest concentrations of imidacloprid used (1 μg L-1), but catch was increased by lower concentrations. It remains to be seen if the repellent effect on insects occurs when neonicotinoids are present in real flowers, but if so then this could have implications for exposure of pollinators to neonicotinoids and for crop pollination. © 2013 Easton, Goulson
Genome-wide signatures of convergent evolution in echolocating mammals
Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised
Ferritins: furnishing proteins with iron
Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins
Anisotropic Impurity-States, Quasiparticle Scattering and Nematic Transport in Underdoped Ca(Fe1-xCox)2As2
Iron-based high temperature superconductivity develops when the `parent'
antiferromagnetic/orthorhombic phase is suppressed, typically by introduction
of dopant atoms. But their impact on atomic-scale electronic structure, while
in theory quite complex, is unknown experimentally. What is known is that a
strong transport anisotropy with its resistivity maximum along the crystal
b-axis, develops with increasing concentration of dopant atoms; this
`nematicity' vanishes when the `parent' phase disappears near the maximum
superconducting Tc. The interplay between the electronic structure surrounding
each dopant atom, quasiparticle scattering therefrom, and the transport
nematicity has therefore become a pivotal focus of research into these
materials. Here, by directly visualizing the atomic-scale electronic structure,
we show that substituting Co for Fe atoms in underdoped Ca(Fe1-xCox)2As2
generates a dense population of identical anisotropic impurity states. Each is
~8 Fe-Fe unit cells in length, and all are distributed randomly but aligned
with the antiferromagnetic a-axis. By imaging their surrounding interference
patterns, we further demonstrate that these impurity states scatter
quasiparticles in a highly anisotropic manner, with the maximum scattering rate
concentrated along the b-axis. These data provide direct support for the recent
proposals that it is primarily anisotropic scattering by dopant-induced
impurity states that generates the transport nematicity; they also yield simple
explanations for the enhancement of the nematicity proportional to the dopant
density and for the occurrence of the highest resistivity along the b-axis
Barnyard grasses were processed with rice around 10000 years ago
Rice (Oryza sativa) is regarded as the only grass that was selected for cultivation and eventual domestication in the Yangtze basin of China. Although both macro-fossils and micro-fossils of rice have been recovered from the Early Neolithic site of Shangshan, dating to more than 10,000 years before present (BP), we report evidence of phytolith and starch microfossils taken from stone tools, both for grinding and cutting, and cultural layers, that indicating barnyard grass (Echinochloa spp.) was a major subsistence resource, alongside smaller quantities of acorn starches (Lithocarpus/Quercus sensu lato) and water chestnuts (Trapa). This evidence suggests that early managed wetland environments were initially harvested for multiple grain species including barnyard grasses as well as rice, and indicate that the emergence of rice as the favoured cultivated grass and ultimately the key domesticate of the Yangtze basin was a protracted process
Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes
Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans
The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation
PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale
Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role
- …
