63 research outputs found

    Probing Lepton Flavor Violation Signal Induced by R-violating Minimal Supersymmetric Standard Model at a Linear Collider

    Full text link
    The lepton-flavor violation (LFV) effect at an e+ee^+e^- linear collider (LC), in the frame of R-parity violating minimal supersymmetric standard model is studied. We take the R-parity violating processes e+eeμ±e^+e^-\to e^{\mp}\mu^{\pm} as signal, and define the summation of the two processes as ``experiment'' observable. We find that the cross-section summation can reach O\cal{O}(101)fb(10^1)fb in the parameter space without sneutrino resonance effect(smν~\sqrt{s} \sim m_{\tilde{\nu}}). The summation treatment manifests uniform differential distribution on cosθ\cos\theta, where θ\theta denotes the polar angles of both outgoing e+/ee^+/e^- respectively to incoming electron beam in two signal processes. The uniform feature together with eμe\mu collinearity would help to reduce the SM background dramatically. Consequently we conclude that at a 500GeV500 GeV LC with 480fb1480 fb^{-1} annual luminosity, it's either possible to detect the distinctive R-violating LFV eμe\mu signal, or exclude sneutrino to mν~>1.1TeVm_{\tilde{\nu}}>1.1 TeV at 95% CL in the machine's biennial runtime interval.Comment: 14 pages, 9 figure

    Lepton flavour violation in future linear colliders in the long-lived stau NLSP scenario

    Get PDF
    We analyze the prospects of observing lepton flavour violation in future e-e- and e+e- linear colliders in scenarios where the gravitino is the lightest supersymmetric particle, and the stau is the next-to-lightest supersymmetric particle. The signals consist of multilepton final states with two heavily ionizing charged tracks produced by the long-lived staus. The Standard Model backgrounds are very small and the supersymmetric backgrounds can be kept well under control by the use of suitable kinematical cuts. We discuss in particular the potential of the projected International Linear Collider to discover lepton flavour violation in this class of scenarios, and we compare the estimated sensitivity with the constraints stemming from the non-observation of rare decays.Comment: 30 pages, 12 figures. Discussion extended to include the efficiency of identifying long-lived staus, references added. To appear in JHE

    Non-universal gauge boson ZZ' and the spin correlation of top quark pair production at ee+e^{-}e^{+} colliders

    Get PDF
    In the off-diagonal basis, we discuss the contributions of the non-universal gauge boson ZZ' predicted by the topcolor-assisted technicolor (TC2TC2) model to the spin configurations and the spin correlation observable of the top quark pair production via the process ee+ttˉe^{-}e^{+}\to t\bar{t}. Our numerical results show that the production cross sections for the like-spin states, which vanish in the standard model, can be significantly large as MZSM_{Z'}\approx \sqrt{S}. With reasonable values of the ZZ' mass MZM_{Z'} and the coupling parameter k1k_{1}, ZZ' exchange can generate large corrections to the spin correlation observable.Comment: 16 pages, 5 figure

    Soft-Gluon Resummation for Bottom Fragmentation in Top Quark Decay

    Get PDF
    We study soft-gluon radiation in top quark decay within the framework of perturbative fragmentation functions. We present results for the b-quark energy distribution, accounting for soft-gluon resummation in both the MSbar coefficient function and in the initial condition of the perturbative fragmentation function. The results show remarkable improvement and the b-quark energy spectrum in top quark decay exhibits very little dependence on factorization and renormalization scales. We present some hadron-level results in both x_B and moment space by including non-perturbative information determined from e+e- data.Comment: 19 pages, 6 figures, JHEP style. Few changes after referee report, one reference added, numerical results unchange

    Electroweak Evolution Equations

    Full text link
    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings.Comment: 15 pages, 3 figure

    Unique Identification of Graviton Exchange Effects in e^+ e^- Collisions

    Get PDF
    Many types of new physics can lead to contact interaction-like modifications in e^+ e^- processes below direct production threshold. We examine the possibility of uniquely identifying the effects of graviton exchange, which are anticipated in many extra dimensional theories, from amongst this large set of models by using the moments of the angular distribution of the final state particles. In the case of the e^+ e^- --> f bar{f} process we demonstrate that this technique allows for the unique identification of the graviton exchange signature at the 5 sigma level for mass scales as high as 6 sqrt(s). The extension of this method to the e^+ e^- --> W^+ W^- process is also discussed.Comment: 21 pages, 3 figs, LaTe

    Precision Measurements and Fermion Geography in the Randall-Sundrum Model Revisited

    Get PDF
    We re-examine the implications of allowing fermion fields to propagate in the five-dimensional bulk of the Randall-Sundrum (RS) localized gravity model. We find that mixing between the Standard Model top quark and its Kaluza Klein excitations generates large contributions to the rho parameter and consequently restricts the fundamental RS scale to lie above 100 TeV. To circumvent this bound we propose a `mixed' scenario which localizes the third generation fermions on the TeV brane and allows the lighter generations to propagate in the full five-dimensional bulk. We show that this construction naturally reproduces the observed m_c / m_t and m_s / m_b hierarchies. We explore the signatures of this scenario in precision measurements and future high energy collider experiments. We find that the region of parameter space that addresses the hierarchies of fermion Yukawa couplings permits a Higgs boson with a mass of 500 GeV and remains otherwise invisible at the LHC. However, the entire parameter region consistent with electroweak precision data is testable at future linear colliders. We briefly discuss possible constraints on this scenario arising from flavor changing neutral currents.Comment: 44 pages, 20 ps files; VII, typos fixed and refs adde

    Physics Beyond the Standard Model and Cosmological Connections: A Summary from LCWS 06

    Get PDF
    The International Linear Collider (ILC) is likely to provide us important insights into the sector of physics that may supersede our current paradigm viz., the Standard Model. In anticipation of the possibility that the ILC may come up in the middle of the next decade, several groups are vigourously investigating its potential to explore this new sector of physics. The Linear Collider Workshop in Bangalore (LCWS06) had several presentations of such studies which looked at supersymmetry, extra dimensions and other exotic possibilities which the ILC may help us discover or understand. Some papers also looked at the understanding of cosmology that may emerge from studies at the ILC. This paper summarises these presentations.Comment: 8 pages (including cover page) LaTeX, Summary talk presented at the International Linear Collider Workshop in Bangalore, India in March 200

    Radiative corrections to the semileptonic and hadronic Higgs-boson decays H -> W W/Z Z -> 4 fermions

    Get PDF
    The radiative corrections of the strong and electroweak interactions are calculated for the Higgs-boson decays H -> WW/ZZ -> 4f with semileptonic or hadronic four-fermion final states in next-to-leading order. This calculation is improved by higher-order corrections originating from heavy-Higgs-boson effects and photonic final-state radiation off charged leptons. The W- and Z-boson resonances are treated within the complex-mass scheme, i.e. without any resonance expansion or on-shell approximation. The calculation essentially follows our previous study of purely leptonic final states. The electroweak corrections are similar for all four-fermion final states; for integrated quantities they amount to some per cent and increase with growing Higgs-boson mass M_H, reaching 7-8% at M_H \sim 500 GeV. For distributions, the corrections are somewhat larger and, in general, distort the shapes. Among the QCD corrections, which include corrections to interference contributions of the Born diagrams, only the corrections to the squared Born diagrams turn out to be relevant. These contributions can be attributed to the gauge-boson decays, i.e. they approximately amount to \alpha_s/\pi for semileptonic final states and 2\alpha_s/\pi for hadronic final states. The discussed corrections have been implemented in the Monte Carlo event generator PROPHECY4F.Comment: 29 pages, LaTeX, 30 postscript figure

    Higgs Boson Flavor-Changing Neutral Decays into Bottom Quarks in Supersymmetry

    Full text link
    We analyze the maximum branching ratios for the Flavor Changing Neutral Current (FCNC) decays of the neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) into bottom quarks, h -> b\bar{s} (h=h^0,H^0,A^0). We consistently correlate these decays with the radiative B-meson decays (b-> s\gamma). A full-fledged combined numerical analysis is performed of these high-energy and low-energy FCNC decay modes in the MSSM parameter space. Our calculation shows that the available data on B(b->s \gamma) severely restricts the allowed values of B(h->b\bar{s}). While the latter could reach a few percent level in fine-tuned scenarios, the requirement of naturalness reduces these FCNC rates into the modest range B(h->b\bar{s}) ~ 10^{-4}-10^{-3}. We find that the bulk of the MSSM contribution to B(h->b\bar{s}) could originate from the strong supersymmetric sector. The maximum value of the FCNC rates obtained in this paper disagree significantly with recent (over-)estimates existing in the literature. Our results are still encouraging because they show that the FCNC modes h->b\bar{s} can be competitive with other Higgs boson signatures and could play a helpful complementary role to identify the supersymmetric Higgs bosons, particularly the lightest CP-even state in the critical LHC mass region m_{h^0} ~= 90-130 GeV.Comment: LaTeX, 19 pages, 4 tables, 7 figures. Clarifications and discussions added, references added. Slight changes in Figs2b,6b and 7b. Version accepted in JHE
    corecore