616 research outputs found

    Genome sequence and analysis of the tuber crop potato

    Get PDF
    Potato (Solanum tuberosum L.) is the world’s most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital cro

    Mechanically stacked 1 nm thick carbon nanosheets: Ultrathin layered materials with tunable optical, chemical and electrical properties

    Full text link
    Carbon nanosheets are mechanically stable free-standing two-dimensional materials with a thickness of ~1 nm and well defined physical and chemical properties. They are made by radiation induced cross-linking of aromatic self-assembled monolayers. Here we present a route to the scalable fabrication of multilayer nanosheets with tunable electrical, optical and chemical properties on insulating substrates. Stacks up to five nanosheets with sizes of ~1 cm^2 on oxidized silicon were studied. Their optical characteristics were investigated by visual inspection, optical microscopy, UV/Vis reflection spectroscopy and model calculations. Their chemical composition was studied by X-ray photoelectron spectroscopy. The multilayer samples were then annealed in ultra high vacuum at various temperatures up to 1100 K. A subsequent investigation by Raman, X-ray photoelectron and UV/Vis reflection spectroscopy as well as by electrical four-point probe measurements demonstrates that the layered nanosheets transform into nanocrystalline graphene. This structural and chemical transformation is accompanied by changes in the optical properties and electrical conductivity and opens up a new path for the fabrication of ultrathin functional conductive coatings.Comment: 36 pages, 7 Figure

    Deep learning for healthcare applications based on physiological signals: A review

    Get PDF
    Background and objective: We have cast the net into the ocean of knowledge to retrieve the latest scientific research on deep learning methods for physiological signals. We found 53 research papers on this topic, published from 01.01.2008 to 31.12.2017. Methods: An initial bibliometric analysis shows that the reviewed papers focused on Electromyogram(EMG), Electroencephalogram(EEG), Electrocardiogram(ECG), and Electrooculogram(EOG). These four categories were used to structure the subsequent content review. Results: During the content review, we understood that deep learning performs better for big and varied datasets than classic analysis and machine classification methods. Deep learning algorithms try to develop the model by using all the available input. Conclusions: This review paper depicts the application of various deep learning algorithms used till recently, but in future it will be used for more healthcare areas to improve the quality of diagnosi

    Abstracts of presentations on selected topics at the XIVth international plant protection congress (IPPC) July 25-30, 1999

    Get PDF

    Successful outcome of six-level cervicothoracic corpectomy and circumferential reconstruction: case report and review of literature on multilevel cervicothoracic corpectomy

    Get PDF
    The authors report the successful outcome of a six-level corpectomy across the cervico-thoracic spine with circumferential reconstruction in a patient with extensive osteomyelitis of the cervical and upper thoracic spine. To the authors’ knowledge, this is the first report of a corpectomy extending across six levels of the cervico-thoracic spine. Clinical relevance: the authors recommend anterior cage and plate-assisted reconstruction and additional posterior instrumentation using modern spinal surgical techniques and implants

    Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology

    Get PDF
    A cytogenetic map has been developed for diploid potato (Solanum tuberosum), in which the arms of the 12 potato bivalents can be identified in pachytene complements using multicolor fluorescence in situ hybridization (FISH) with a set of 60 genetically anchored bacterial artificial chromosome (BAC) clones from the RHPOTKEY BAC library. This diagnostic set of selected BACs (five per chromosome) hybridizes to euchromatic regions and corresponds to well-defined loci in the ultradense genetic map, and with these probes a new detailed and reliable pachytene karyotype could be established. Chromosome size has been estimated both from microscopic length measurements and from 4′,6-diamidino-2-phenylindole fluorescence-based DNA content measurements. In both approaches, chromosome 1 is the largest (100–115 Mb) and chromosome 11 the smallest (49–53 Mb). Detailed measurements of mega-base-pair to micrometer ratios have been obtained for chromosome 5, with average values of 1.07 Mb/μm for euchromatin and 3.67 Mb/μm for heterochromatin. In addition, our FISH results helped to solve two discrepancies in the potato genetic map related to chromosomes 8 and 12. Finally, we discuss the significance of the potato cytogenetic map for extended FISH studies in potato and related Solanaceae, which will be especially beneficial for the potato genome-sequencing project
    corecore