13,100 research outputs found

    Ultracold atomic Bose and Fermi spinor gases in optical lattices

    Get PDF
    We investigate magnetic properties of Mott-insulating phases of ultracold Bose and Fermi spinor gases in optical lattices. We consider in particular the F=2 Bose gas, and the F=3/2 and F=5/2 Fermi gases. We derive effective spin Hamiltonians for one and two atoms per site and discuss the possibilities of manipulating the magnetic properties of the system using optical Feshbach resonances. We discuss low temperature quantum phases of a 87Rb gas in the F=2 hyperfine state, as well as possible realizations of high spin Fermi gases with either 6Li or 132Cs atoms in the F=3/2 state, and with 173Yb atoms in the F=5/2 state.Comment: 15 pages, 5 figures; a completely new and substantially expanded version with several errors correcte

    Properties of gas clumps and gas clumping factor in the intra cluster medium

    Full text link
    The spatial distribution of gas matter inside galaxy clusters is not completely smooth, but may host gas clumps associated with substructures. These overdense gas substructures are generally a source of unresolved bias of X-ray observations towards high density gas, but their bright luminosity peaks may be resolved sources within the ICM, that deep X-ray exposures may be (already) capable to detect. In this paper we aim at investigating both features, using a set of high-resolution cosmological simulations with ENZO. First, we monitor how the bias by unresolved gas clumping may yield incorrect estimates of global cluster parameters and affects the measurements of baryon fractions by X-ray observations. We find that based on X-ray observations of narrow radial strips, it is difficult to recover the real baryon fraction to better than 10 - 20 percent uncertainty. Second, we investigated the possibility of observing bright X-ray clumps in the nearby Universe (z<=0.3). We produced simple mock X-ray observations for several instruments (XMM, Suzaku and ROSAT) and extracted the statistics of potentially detectable bright clumps. Some of the brightest clumps predicted by simulations may already have been already detected in X- ray images with a large field of view. However, their small projected size makes it difficult to prove their existence based on X-ray morphology only. Preheating, AGN feedback and cosmic rays are found to have little impact on the statistical properties of gas clumps.Comment: 17 pages, 11 figures. MNRAS accepte

    Back and forth from cool core to non-cool core: clues from radio-halos

    Full text link
    X-ray astronomers often divide galaxy clusters into two classes: "cool core" (CC) and "non-cool core" (NCC) objects. The origin of this dichotomy has been the subject of debate in recent years, between "evolutionary" models (where clusters can evolve from CC to NCC, mainly through mergers) and "primordial" models (where the state of the cluster is fixed "ab initio" by early mergers or pre-heating). We found that in a well-defined sample (clusters in the GMRT Radio halo survey with available Chandra or XMM-Newton data), none of the objects hosting a giant radio halo can be classified as a cool core. This result suggests that the main mechanisms which can start a large scale synchrotron emission (most likely mergers) are the same that can destroy CC and therefore strongly supports "evolutionary" models of the CC-NCC dichotomy. Moreover combining the number of objects in the CC and NCC state with the number of objects with and without a radio-halo, we estimated that the time scale over which a NCC cluster relaxes to the CC state, should be larger than the typical life-time of radio-halos and likely shorter than about 3 Gyr. This suggests that NCC transform into CC more rapidly than predicted from the cooling time, which is about 10 Gyr in NCC systems, allowing the possibility of a cyclical evolution between the CC and NCC states.Comment: Accepted for publication in A&
    corecore