5,075 research outputs found
Reusable rocket engine intelligent control system framework design, phase 2
Elements of an advanced functional framework for reusable rocket engine propulsion system control are presented for the Space Shuttle Main Engine (SSME) demonstration case. Functional elements of the baseline functional framework are defined in detail. The SSME failure modes are evaluated and specific failure modes identified for inclusion in the advanced functional framework diagnostic system. Active control of the SSME start transient is investigated, leading to the identification of a promising approach to mitigating start transient excursions. Key elements of the functional framework are simulated and demonstration cases are provided. Finally, the advanced function framework for control of reusable rocket engines is presented
Extravehicular mobility unit subcritical liquid oxygen storage and supply system
The storage of life support oxygen in the Extravehicular Mobility Unit in the liquid state offers some advantages over the current method of storing the oxygen as a high pressure gas. Storage volume is reduced because of the increased density associated with liquid. The lower storage and operating pressures also reduce the potential for leakage or bursting of the storage tank. The potential for combustion resulting from adiabatic combustion of the gas within lines and components is substantially reduced. Design constraints on components are also relaxed due to the lower system pressures. A design study was performed to determine the requirements for a liquid storage system and prepare a conceptual design. The study involved four tasks. The first was to identify system operating requirements that influence or direct the design of the system. The second was to define candidate storage system concepts that could possibly satisfy the requirements. An evaluation and comparison of the candidate concepts was conducted in the third task. The fourth task was devoted to preparing a conceptual design of the recommended storage system and to evaluate concerns with integration of the concept into the EMU. The results are presented
MIT's interferometer CST testbed
The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances
Recommended from our members
Sensitivity of terrestrial precipitation trends to the structural evolution of sea surface temperatures
Pronounced intermodel differences in the projected response of land surface precipitation (LSP) to future anthropogenic forcing remain in the Coupled Model Intercomparison Project Phase 5 model integrations. A large fraction of the intermodel spread in projected LSP trends is demonstrated here to be associated with systematic differences in simulated sea surface temperature (SST) trends, especially the representation of changes in (i) the interhemispheric SST gradient and (ii) the tropical Pacific SSTs. By contrast, intermodel differences in global mean SST, representative of differing global climate sensitivities, exert limited systematic influence on LSP patterns. These results highlight the importance to regional terrestrial precipitation changes of properly simulating the spatial distribution of large-scale, remote changes as reflected in the SST response to increasing greenhouse gases. Moreover, they provide guidance regarding which region-specific precipitation projections may be potentially better constrained for use in climate change impact assessments
The WFC3 Galactic Bulge Treasury Program: Metallicity Estimates for the Stellar Population and Exoplanet Hosts
We present new UV-to-IR stellar photometry of four low-extinction windows in
the Galactic bulge, obtained with the Wide Field Camera 3 on the Hubble Space
Telescope (HST). Using our five bandpasses, we have defined reddening-free
photometric indices sensitive to stellar effective temperature and metallicity.
We find that the bulge populations resemble those formed via classical
dissipative collapse: each field is dominated by an old (~10 Gyr) population
exhibiting a wide metallicity range (-1.5 < [Fe/H] < 0.5). We detect a
metallicity gradient in the bulge population, with the fraction of stars at
super-solar metallicities dropping from 41% to 35% over distances from the
Galactic center ranging from 0.3 to 1.2 kpc. One field includes candidate
exoplanet hosts discovered in the SWEEPS HST transit survey. Our measurements
for 11 of these hosts demonstrate that exoplanets in the distinct bulge
environment are preferentially found around high-metallicity stars, as in the
solar neighborhood, supporting the view that planets form more readily in
metal-rich environments.Comment: Accepted for publication in The Astrophysical Journal Letters. Latex,
5 pages, ApJ forma
The equation of state for two-dimensional hard-sphere gases: Hard-sphere gases as ideal gases with multi-core boundaries
The equation of state for a two-dimensional hard-sphere gas is difficult to
calculate by usual methods. In this paper we develop an approach for
calculating the equation of state of hard-sphere gases, both for two- and
three-dimensional cases. By regarding a hard-sphere gas as an ideal gas
confined in a container with a multi-core (excluded sphere) boundary, we treat
the hard-sphere interaction in an interacting gas as the boundary effect on an
ideal quantum gas; this enables us to treat an interacting gas as an ideal one.
We calculate the equation of state for a three-dimensional hard-sphere gas with
spin , and compare it with the results obtained by other methods. By this
approach the equation of state for a two-dimensional hard-sphere gas can be
calculated directly.Comment: 9 pages, 1 figur
Stellar Proper Motions in the Galactic Bulge from deep HST ACS/WFC Photometry
We present stellar proper motions in the Galactic bulge from the Sagittarius
Window Eclipsing Extrasolar Search (SWEEPS) project using ACS/WFC on HST.
Proper motions are extracted for more than 180,000 objects, with >81,000
measured to accuracy better than 0.3 mas/yr in both coordinates. We report
several results based on these measurements: 1. Kinematic separation of bulge
from disk allows a sample of >15,000 bulge objects to be extracted based on
>6-sigma detections of proper motion, with <0.2% contamination from the disk.
This includes the first detection of a candidate bulge Blue Straggler
population. 2. Armed with a photometric distance modulus on a star by star
basis, and using the large number of stars with high-quality proper motion
measurements to overcome intrinsic scatter, we dissect the kinematic properties
of the bulge as a function of distance along the line of sight. This allows us
to extract the stellar circular speed curve from proper motions alone, which we
compare with the circular speed curve obtained from radial velocities. 3. We
trace the variation of the {l,b} velocity ellipse as a function of depth. 4.
Finally, we use the density-weighted {l,b} proper motion ellipse produced from
the tracer stars to assess the kinematic membership of the sixteen transiting
planet candidates discovered in the Sagittarius Window; the kinematic
distribution of the planet candidates is consistent with that of the disk and
bulge stellar populations.Comment: 71 pages, 30 figures, ApJ Accepte
Levels of complexity in financial markets
We consider different levels of complexity which are observed in the
empirical investigation of financial time series. We discuss recent empirical
and theoretical work showing that statistical properties of financial time
series are rather complex under several ways. Specifically, they are complex
with respect to their (i) temporal and (ii) ensemble properties. Moreover, the
ensemble return properties show a behavior which is specific to the nature of
the trading day reflecting if it is a normal or an extreme trading day.Comment: 14 pages, 5 figures, to appear on Physica A, Proceedings of the NATO
Advanced Research Workshop on Application of Physics in Economic Modeling,
Prague February 8-10 200
- …
