385 research outputs found
Ariel - Volume 12(13) Number 2
Editor
Gary Fishbein
Production & Business Manager
Rich Davis
Layout Editor
Lynn Solomon
Assistant Layout Editors
Bessann Dawson
Tonie Kline
Becky A. Zuurbier
Photography Editor
Ben Alma
AN ULTRA-FAINT GALAXY CANDIDATE DISCOVERED in EARLY DATA from the MAGELLANIC SATELLITES SURVEY
We report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644-5953 (Pictor II or Pic II) is a low surface brightness (μ = 28.5+1 -1 mag arcsec-2 within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of 45+5 -4 kpc. The physical size (r1/2 = 46+15 -11) and low luminosity (Mv = -3.2+0.4 -0.5 mag) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644-5953 (Pic II) is located 11.3+3.1 -0.9 kpc from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644-5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.Peer reviewe
A rocky planet transiting a nearby low-mass star
M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of
the size of the Sun -- are the most common class of star in our Galaxy and
outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M
dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf
planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per
star. The nearest such planets known to transit their star are 39 parsecs away,
too distant for detailed follow-up observations to measure the planetary masses
or to study their atmospheres. Here we report observations of GJ 1132b, a
planet with a size of 1.2 Earth radii that is transiting a small star 12
parsecs away. Our Doppler mass measurement of GJ 1132b yields a density
consistent with an Earth-like bulk composition, similar to the compositions of
the six known exoplanets with masses less than six times that of the Earth and
precisely measured densities. Receiving 19 times more stellar radiation than
the Earth, the planet is too hot to be habitable but is cool enough to support
a substantial atmosphere, one that has probably been considerably depleted of
hydrogen. Because the host star is nearby and only 21 per cent the radius of
the Sun, existing and upcoming telescopes will be able to observe the
composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at
http://dx.doi.org/10.1038/nature15762. This is the authors' version of the
manuscrip
Lower and upper probabilities in the distributive lattice of subsystems
yesThe set of subsystems ∑ (m) of a finite quantum system ∑(n) (with variables in Ζ(n)) together with logical connectives, is a distributive lattice. With regard to this lattice, the ℓ(m | ρn) = Tr ((m) ρn ) (where (m) is the projector to ∑(m)) obeys a supermodularity inequality, and it is interpreted as a lower probability in the sense of the Dempster–Shafer theory, and not as a Kolmogorov probability. It is shown that the basic concepts of the Dempster–Shafer theory (lower and upper probabilities and the Dempster multivaluedness) are pertinent to the quantum formalism of finite systems
Spitzer Space Telescope observations of the Carina Nebula: The steady march of feedback-driven star formation
We report the first results of imaging the Carina Nebula with Spitzer/IRAC,
providing a catalog of point sources and YSOs based on SED fits. We discuss
several aspects of the extended emission, including dust pillars that result
when a clumpy molecular cloud is shredded by massive star feedback. There are
few "extended green objects" (EGOs) normally taken as signposts of outflow
activity, and none of the HH jets detected optically are seen as EGOs. A
population of "extended red objects" tends to be found around OB stars, some
with clear bow-shocks. These are dusty shocks where stellar winds collide with
flows off nearby clouds. Finally, the relative distributions of O stars and
subclusters of YSOs as compared to dust pillars shows that while some YSOs are
located within pillars, many more stars and YSOs reside just outside pillar
heads. We suggest that pillars are transient phenomena, part of a continuous
outwardly propagating wave of star formation driven by massive star feedback.
As pillars are destroyed, they leave newly formed stars in their wake, which
are then subsumed into the young OB association. Altogether, the current
generation of YSOs shows no strong deviation from a normal IMF. The number of
YSOs suggests a roughly constant star-formation rate over the past 3Myr,
implying that star formation in pillars constitutes an important mechanism to
construct unbound OB associations. Accelerated pillars may give birth to O-type
stars that, after several Myr, could appear to have formed in isolation.Comment: 25 pages, 15 figures, MNRAS accepte
The ethics of digital well-being: a multidisciplinary perspective
This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being
The Redshift Completeness of Local Galaxy Catalogs
There is considerable interest in understanding the demographics of galaxies within the local universe (defined, for our purposes, as the volume within a radius of 200 Mpc or z ≤ 0.05). In this pilot paper, using supernovae (SNe) as signposts to galaxies, we investigate the redshift completeness of catalogs of nearby galaxies. In particular, type Ia SNe are bright and are good tracers of the bulk of the galaxy population, as they arise in both old and young stellar populations. Our input sample consists of SNe with redshift ≤0.05, discovered by the flux-limited ASAS-SN survey. We define the redshift completeness fraction (RCF) as the number of SN host galaxies with known redshift prior to SN discovery, determined, in this case, via the NASA Extragalactic Database, divided by the total number of newly discovered SNe. Using SNe Ia, we find % (90% confidence interval) for z < 0.03. We examine the distribution of host galaxies with and without cataloged redshifts as a function of absolute magnitude and redshift, and, unsurprisingly, find that higher-z and fainter hosts are less likely to have a known redshift prior to the detection of the SN. However, surprisingly, some galaxies are also missing. We conclude with thoughts on the future improvement of RCF measurements that will be made possible from large SN samples resulting from ongoing and especially upcoming time-domain surveys
High-Precision Radio and Infrared Astrometry of LSPM J1314+1320AB - II: Testing Pre--Main-Sequence Models at the Lithium Depletion Boundary with Dynamical Masses
Trent J. Dupuy, et al, 'HIGH-PRECISION RADIO AND INFRARED ASTROMETRY OF LSPM J1314+1320AB. II. TESTING PREMAIN-SEQUENCE MODELS AT THE LITHIUM DEPLETION BOUNDARY WITH DYNAMICAL MASSES', The Astrophysical Journal, Vol. 827 (1), 14pp, August 2016. doi:10.3847/0004-637X/827/1/23. © 2016. The American Astronomical Society. All rights reserved.We present novel tests of premain-sequence models based on individual dynamical masses for the M7 binary LSPM J1314+1320AB. Joint analysis of our Keck adaptive optics astrometric monitoring along with Very Long Baseline Array radio data from a companion paper yield component masses of and and a parallactic distance of pc. We also derive component luminosities that are consistent with the system being coeval at an age of Myr, according to BHAC15 evolutionary models. The presence of lithium is consistent with model predictions, marking the first time the theoretical lithium depletion boundary has been tested with ultracool dwarfs of known mass. However, we find that the average evolutionary model-derived effective temperature ( K) is 180 K hotter than we derive from a spectral type relation based on BT-Settl models ( K). We suggest that the dominant source of this discrepancy is model radii being too small by 13%. In a test that mimics the typical application of evolutionary models by observers, we derive masses on the H-R diagram using the luminosity and BT-Settl temperature. The estimated masses are % (2.0) lower than we measure dynamically and would imply that this is a system of 50 brown dwarfs, highlighting the large systematic errors possible when inferring masses from the H-R diagram. This is first time masses have been measured for ultracool (M6) dwarfs displaying spectral signatures of low gravity. Based on features in the infrared, LSPM J1314+1320AB appears higher gravity than typical Pleiades and AB Dor members, opposite the expectation given its younger age. The components of LSPM J1314+1320AB are now the nearest, lowest mass premain-sequence stars with direct mass measurements.Peer reviewe
Extragalactic Peaked-Spectrum Radio Sources at Low Frequencies
This document is the Accepted Manuscript of the following article: J.R. Callingham, et al, 'Extragalactic Peaked-Spectrum Radio Sources at Low Frequencies', The Astrophysical Journal, 836 (2), (28pp), first published online 17 February 2017. DOI: https://doi.org/10.3847/1538-4357-836/2/174. © 2017, The American Astronomical Society. All rights reserved. Data tables, and the appendix containing all of the SEDs, are available from the journal and on request to the authorWe present a sample of 1,483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low frequency analogues of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and demonstrate the possibility of identifying high redshift () galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.Peer reviewedFinal Accepted Versio
- …
