623 research outputs found

    Improving the low-lying spectrum of the overlap kernel

    Get PDF
    The action of the overlap-Dirac operator on a vector is typically implemented in directly through a multi-shift conjugate gradient solver. The compute-time this takes to evaluate depends upon the condition number κ\kappa of the matrix that is used as the overlap kernel. We examine the low-lying spectra of various candidate kernels in an effort to optimise κ\kappa, thereby speeding up the overlap evaluation.Comment: 5 pages, 8 figure

    FLIC-Overlap Fermions and Topology

    Get PDF
    APE smearing the links in the irrelevant operators of clover fermions (Fat-Link Irrelevant Clover (FLIC) fermions) provides significant improvement in the condition number of the Hermitian-Dirac operator and gives rise to a factor of two savings in computing the overlap operator. This report investigates the effects of using a highly-improved definition of the lattice field-strength tensor F_mu_nu in the fermion action, made possible through the use of APE-smeared fat links in the construction of the irrelevant operators. Spurious double-zero crossings in the spectral flow of the Hermitian-Wilson Dirac operator associated with lattice artifacts at the scale of the lattice spacing are removed with FLIC fermions composed with an O(a^4)-improved lattice field strength tensor. Hence, FLIC-Overlap fermions provide an additional benefit to the overlap formalism: a correct realization of topology in the fermion sector on the lattice.Comment: Lattice2002(chiral

    Chiral Analysis of Quenched Baryon Masses

    Get PDF
    We extend to quenched QCD an earlier investigation of the chiral structure of the masses of the nucleon and the delta in lattice simulations of full QCD. Even after including the meson-loop self-energies which give rise to the leading and next-to-leading non-analytic behaviour (and hence the most rapid variation in the region of light quark mass), we find surprisingly little curvature in the quenched case. Replacing these meson-loop self-energies by the corresponding terms in full QCD yields a remarkable level of agreement with the results of the full QCD simulations. This comparison leads to a very good understanding of the origins of the mass splitting between these baryons.Comment: 23 pages, 6 figure

    A study of chiral symmetry in quenched QCD using the Overlap-Dirac operator

    Get PDF
    We compute fermionic observables relevant to the study of chiral symmetry in quenched QCD using the Overlap-Dirac operator for a wide range of the fermion mass. We use analytical results to disentangle the contribution from exact zero modes and simplify our numerical computations. Details concerning the numerical implementation of the Overlap-Dirac operator are presented.Comment: 24 pages revtex with 5 postscript figures included by eps

    Light Quark Simulations With FLIC Fermions

    Get PDF
    Hadron masses are calculated in quenched lattice QCD in order to probe the scaling behavior of a novel fat-link clover fermion action in which only the irrelevant operators of the fermion action are constructed using APE-smeared links. Light quark masses corresponding to an m_pi / m_rho ratio of 0.35 are considered to assess the exceptional configuration problem of clover-fermion actions. This Fat-Link Irrelevant Clover (FLIC) fermion action provides scaling which is superior to mean-field improvement and offers advantages over nonperturbative improvement, including reduced exceptional configurations.Comment: 3 pages, 2 figures, Lattice2002(QCD Spectrum and Quark Masses

    Scaling behavior of the overlap quark propagator in Landau gauge

    Get PDF
    The properties of the momentum space quark propagator in Landau gauge are examined for the overlap quark action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice spacings and similar physical volumes to explore the approach of the quark propagator toward the continuum limit. We have calculated the nonperturbative momentum-dependent wave function renormalization function Z(p) and the nonperturbative mass function M(p) for a variety of bare quark masses and perform an extrapolation to the chiral limit. We find the behavior of Z(p) and M(p) are in reasonable agreement between the two finer lattices in the chiral limit, however the data suggest that an even finer lattice is desirable. The large momentum behavior is examined to determine the quark condensate.Comment: 9 pages, 5 figures, Revtex 4. Streamlined presentation, additional data. Final versio

    Spin-3/2 Nucleon and Delta Baryons in Lattice QCD

    Full text link
    We present first results for masses of spin-3/2 N and Delta baryons in lattice QCD using Fat-Link Irrelevant Clover (FLIC) fermions. Spin-3/2 interpolating fields providing overlap with both spin-3/2 and spin-1/2 states are considered. In the isospin-1/2 sector, we observe, after appropriate spin and parity projection, a strong signal for the J^P=3/2^- state together with a weak but discernible signal for the 3/2^+ state with a mass splitting near that observed experimentally. We also find good agreement between the 1/2^+/- masses and earlier nucleon mass simulations with the standard spin-1/2 interpolating field. For the isospin-3/2 Delta states, clear mass splittings are observed between the various 1/2^+/- and 3/2^+/- channels, with the calculated level orderings in good agreement with those observed empirically.Comment: 17 pages, 8 figures, 2 table

    Insight into nucleon structure from generalized parton distributions

    Full text link
    The lowest three moments of generalized parton distributions are calculated in full QCD and provide new insight into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon.Comment: 3 pages, Lattice2003(Theoretical developments

    Chiral Fermions and Multigrid

    Get PDF
    Lattice regularization of chiral fermions is an important development of the theory of elementary particles. Nontheless, brute force computer simulations are very expensive, if not prohibitive. In this letter I exploit the non-interacting character of the lattice theory in the flavor space and propose a multigrid approach for the simulation of the theory. Already a two-grid algorithm saves an order of magnitude of computer time for fermion propagator calculations.Comment: Latex, 6 pages, 1 figur

    Moments of nucleon spin-dependent generalized parton distributions

    Full text link
    We present a lattice measurement of the first two moments of the spin-dependent GPD H-tilde(x,xi,t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions.Comment: Lattice2003(Theory), 3 pages, 3 figures, to appear in the Proceedings of Lattice 200
    corecore