623 research outputs found
Improving the low-lying spectrum of the overlap kernel
The action of the overlap-Dirac operator on a vector is typically implemented
in directly through a multi-shift conjugate gradient solver. The compute-time
this takes to evaluate depends upon the condition number of the matrix
that is used as the overlap kernel. We examine the low-lying spectra of various
candidate kernels in an effort to optimise , thereby speeding up the
overlap evaluation.Comment: 5 pages, 8 figure
FLIC-Overlap Fermions and Topology
APE smearing the links in the irrelevant operators of clover fermions
(Fat-Link Irrelevant Clover (FLIC) fermions) provides significant improvement
in the condition number of the Hermitian-Dirac operator and gives rise to a
factor of two savings in computing the overlap operator. This report
investigates the effects of using a highly-improved definition of the lattice
field-strength tensor F_mu_nu in the fermion action, made possible through the
use of APE-smeared fat links in the construction of the irrelevant operators.
Spurious double-zero crossings in the spectral flow of the Hermitian-Wilson
Dirac operator associated with lattice artifacts at the scale of the lattice
spacing are removed with FLIC fermions composed with an O(a^4)-improved lattice
field strength tensor. Hence, FLIC-Overlap fermions provide an additional
benefit to the overlap formalism: a correct realization of topology in the
fermion sector on the lattice.Comment: Lattice2002(chiral
Chiral Analysis of Quenched Baryon Masses
We extend to quenched QCD an earlier investigation of the chiral structure of
the masses of the nucleon and the delta in lattice simulations of full QCD.
Even after including the meson-loop self-energies which give rise to the
leading and next-to-leading non-analytic behaviour (and hence the most rapid
variation in the region of light quark mass), we find surprisingly little
curvature in the quenched case. Replacing these meson-loop self-energies by the
corresponding terms in full QCD yields a remarkable level of agreement with the
results of the full QCD simulations. This comparison leads to a very good
understanding of the origins of the mass splitting between these baryons.Comment: 23 pages, 6 figure
A study of chiral symmetry in quenched QCD using the Overlap-Dirac operator
We compute fermionic observables relevant to the study of chiral symmetry in
quenched QCD using the Overlap-Dirac operator for a wide range of the fermion
mass. We use analytical results to disentangle the contribution from exact zero
modes and simplify our numerical computations. Details concerning the numerical
implementation of the Overlap-Dirac operator are presented.Comment: 24 pages revtex with 5 postscript figures included by eps
Light Quark Simulations With FLIC Fermions
Hadron masses are calculated in quenched lattice QCD in order to probe the
scaling behavior of a novel fat-link clover fermion action in which only the
irrelevant operators of the fermion action are constructed using APE-smeared
links. Light quark masses corresponding to an m_pi / m_rho ratio of 0.35 are
considered to assess the exceptional configuration problem of clover-fermion
actions. This Fat-Link Irrelevant Clover (FLIC) fermion action provides scaling
which is superior to mean-field improvement and offers advantages over
nonperturbative improvement, including reduced exceptional configurations.Comment: 3 pages, 2 figures, Lattice2002(QCD Spectrum and Quark Masses
Scaling behavior of the overlap quark propagator in Landau gauge
The properties of the momentum space quark propagator in Landau gauge are
examined for the overlap quark action in quenched lattice QCD. Numerical
calculations are done on three lattices with different lattice spacings and
similar physical volumes to explore the approach of the quark propagator toward
the continuum limit. We have calculated the nonperturbative momentum-dependent
wave function renormalization function Z(p) and the nonperturbative mass
function M(p) for a variety of bare quark masses and perform an extrapolation
to the chiral limit. We find the behavior of Z(p) and M(p) are in reasonable
agreement between the two finer lattices in the chiral limit, however the data
suggest that an even finer lattice is desirable. The large momentum behavior is
examined to determine the quark condensate.Comment: 9 pages, 5 figures, Revtex 4. Streamlined presentation, additional
data. Final versio
Spin-3/2 Nucleon and Delta Baryons in Lattice QCD
We present first results for masses of spin-3/2 N and Delta baryons in
lattice QCD using Fat-Link Irrelevant Clover (FLIC) fermions. Spin-3/2
interpolating fields providing overlap with both spin-3/2 and spin-1/2 states
are considered. In the isospin-1/2 sector, we observe, after appropriate spin
and parity projection, a strong signal for the J^P=3/2^- state together with a
weak but discernible signal for the 3/2^+ state with a mass splitting near that
observed experimentally. We also find good agreement between the 1/2^+/- masses
and earlier nucleon mass simulations with the standard spin-1/2 interpolating
field. For the isospin-3/2 Delta states, clear mass splittings are observed
between the various 1/2^+/- and 3/2^+/- channels, with the calculated level
orderings in good agreement with those observed empirically.Comment: 17 pages, 8 figures, 2 table
Insight into nucleon structure from generalized parton distributions
The lowest three moments of generalized parton distributions are calculated
in full QCD and provide new insight into the behavior of nucleon
electromagnetic form factors, the origin of the nucleon spin, and the
transverse structure of the nucleon.Comment: 3 pages, Lattice2003(Theoretical developments
Chiral Fermions and Multigrid
Lattice regularization of chiral fermions is an important development of the
theory of elementary particles. Nontheless, brute force computer simulations
are very expensive, if not prohibitive. In this letter I exploit the
non-interacting character of the lattice theory in the flavor space and propose
a multigrid approach for the simulation of the theory. Already a two-grid
algorithm saves an order of magnitude of computer time for fermion propagator
calculations.Comment: Latex, 6 pages, 1 figur
Moments of nucleon spin-dependent generalized parton distributions
We present a lattice measurement of the first two moments of the
spin-dependent GPD H-tilde(x,xi,t). From these we obtain the axial coupling
constant and the second moment of the spin-dependent forward parton
distribution. The measurements are done in full QCD using Wilson fermions. In
addition, we also present results from a first exploratory study of full QCD
using Asqtad sea and domain-wall valence fermions.Comment: Lattice2003(Theory), 3 pages, 3 figures, to appear in the Proceedings
of Lattice 200
- …
