147 research outputs found
Expression quantitative trait loci are highly sensitive to cellular differentiation state
Blood cell development from multipotent hematopoietic stem cells to specialized blood cells is accompanied by drastic changes in gene expression for which the triggers remain mostly unknown. Genetical genomics is an approach linking natural genetic variation to gene expression variation, thereby allowing the identification of genomic loci containing gene expression modulators (eQTLs). In this paper, we used a genetical genomics approach to analyze gene expression across four developmentally close blood cell types collected from a large number of genetically different but related mouse strains. We found that, while a significant number of eQTLs (365) had a consistent “static” regulatory effect on gene expression, an even larger number were found to be very sensitive to cell stage. As many as 1,283 eQTLs exhibited a “dynamic” behavior across cell types. By looking more closely at these dynamic eQTLs, we show that the sensitivity of eQTLs to cell stage is largely associated with gene expression changes in target genes. These results stress the importance of studying gene expression variation in well-defined cell populations. Only such studies will be able to reveal the important differences in gene regulation between different ce
A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions
Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact
Congruence of additive and non-additive effects on gene expression estimated from pedigree and SNP data
There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted-in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects
Evolution of the Thrombolytic Treatment Window for Acute Ischemic Stroke
Ischemic stroke is a major cause of morbidity and mortality for which the only approved treatment in the acute setting is intravenous thrombolysis. The efficacy and safety of recombinant tissue plasminogen activator (rt-PA) have been firmly established within 3 h of symptom onset; however, few patients are eligible for treatment in this time window. Expanding the time for treatment has been challenging, but new evidence has demonstrated a modest statistical improvement in selected patients when rt-PA is administered within 4.5 h. This important finding hopefully will enable more patients to receive treatment and simultaneously provides an opportunity to reaffirm that the benefits of rt-PA diminish with time
Moving toward a system genetics view of disease
Testing hundreds of thousands of DNA markers in human, mouse, and other species for association to complex traits like disease is now a reality. However, information on how variations in DNA impact complex physiologic processes flows through transcriptional and other molecular networks. In other words, DNA variations impact complex diseases through the perturbations they cause to transcriptional and other biological networks, and these molecular phenotypes are intermediate to clinically defined disease. Because it is also now possible to monitor transcript levels in a comprehensive fashion, integrating DNA variation, transcription, and phenotypic data has the potential to enhance identification of the associations between DNA variation and diseases like obesity and diabetes, as well as characterize those parts of the molecular networks that drive these diseases. Toward that end, we review methods for integrating expression quantitative trait loci (eQTLs), gene expression, and clinical data to infer causal relationships among gene expression traits and between expression and clinical traits. We further describe methods to integrate these data in a more comprehensive manner by constructing coexpression gene networks that leverage pairwise gene interaction data to represent more general relationships. To infer gene networks that capture causal information, we describe a Bayesian algorithm that further integrates eQTLs, expression, and clinical phenotype data to reconstruct whole-gene networks capable of representing causal relationships among genes and traits in the network. These emerging network approaches, aimed at processing high-dimensional biological data by integrating data from multiple sources, represent some of the first steps in statistical genetics to identify multiple genetic perturbations that alter the states of molecular networks and that in turn push systems into disease states. Evolving statistical procedures that operate on networks will be critical to extracting information related to complex phenotypes like disease, as research goes beyond a single-gene focus. The early successes achieved with the methods described herein suggest that these more integrative genomics approaches to dissecting disease traits will significantly enhance the identification of key drivers of disease beyond what could be achieved by genetic association studies alone
Inhibition of 11βHSD1 with the S-phenylethylaminothiazolone BVT116429 increases adiponectin concentrations and improves glucose homeostasis in diabetic KKAy mice
Complex nature of SNP genotype effects on gene expression in primary human leucocytes
<p>Abstract</p> <p>Background</p> <p>Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown.</p> <p>Methods</p> <p>We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110) from individuals with celiac disease – a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90), and performed a meta-analysis to increase power to detect non-tissue specific effects.</p> <p>Results</p> <p>In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (< 250 kb from SNP, at FDR = 0.05, <it>cis </it>expression quantitative trait loci, eQTLs). 135 of the detected SNP-probe effects (reflecting 51 unique probes) were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed <it>cis</it>-eQTLs. Celiac associated risk variants from two regions, containing genes <it>IL18RAP </it>and <it>CCR3</it>, showed significant <it>cis </it>genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected.</p> <p>Conclusion</p> <p>In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.</p
Risk alleles for chronic hepatitis B are associated with decreased mRNA expression of HLA-DPA1 and HLA-DPB1 in normal human liver
A genome-wide association study identified single nucleotide polymorphisms (SNPs) rs3077 and rs9277535 located in the 3′ untranslated regions of human leukocyte antigen (HLA) class II genes HLA-DPA1 and HLA-DPB1, respectively, as the independent variants most strongly associated with chronic hepatitis B. We examined whether these SNPs are associated with mRNA expression of HLA-DPA1 and HLA-DPB1. We identified gene expression-associated SNPs (eSNPs) in normal liver samples obtained from 651 individuals of European ancestry by integrating genotype (∼650 000 SNPs) and gene expression (>39 000 transcripts) data from each sample. We used the Kruskal–Wallis test to determine associations between gene expression and genotype. To confirm findings, we measured allelic expression imbalance (AEI) of complementary DNA compared with DNA in liver specimens from subjects who were heterozygous for rs3077 and rs9277535. On a genome-wide basis, rs3077 was the SNP most strongly associated with HLA-DPA1 expression (p=10−48), and rs9277535 was strongly associated with HLA-DPB1 expression (p=10−15). Consistent with these gene expression associations, we observed AEI for both rs3077 (p=3.0 × 10−7; 17 samples) and rs9277535 (p=0.001; 17 samples). We conclude that the variants previously associated with chronic hepatitis B are also strongly associated with mRNA expression of HLA-DPA1 and HLA-DPB1, suggesting that expression of these genes is important in control of HBV
Integrative Analysis of Low- and High-Resolution eQTL
The study of expression quantitative trait loci (eQTL) is a powerful way of detecting transcriptional regulators at a genomic scale and for elucidating how natural genetic variation impacts gene expression. Power and genetic resolution are heavily affected by the study population: whereas recombinant inbred (RI) strains yield greater statistical power with low genetic resolution, using diverse inbred or outbred strains improves genetic resolution at the cost of lower power. In order to overcome the limitations of both individual approaches, we combine data from RI strains with genetically more diverse strains and analyze hippocampus eQTL data obtained from mouse RI strains (BXD) and from a panel of diverse inbred strains (Mouse Diversity Panel, MDP). We perform a systematic analysis of the consistency of eQTL independently obtained from these two populations and demonstrate that a significant fraction of eQTL can be replicated. Based on existing knowledge from pathway databases we assess different approaches for using the high-resolution MDP data for fine mapping BXD eQTL. Finally, we apply this framework to an eQTL hotspot on chromosome 1 (Qrr1), which has been implicated in a range of neurological traits. Here we present the first systematic examination of the consistency between eQTL obtained independently from the BXD and MDP populations. Our analysis of fine-mapping approaches is based on ‘real life’ data as opposed to simulated data and it allows us to propose a strategy for using MDP data to fine map BXD eQTL. Application of this framework to Qrr1 reveals that this eQTL hotspot is not caused by just one (or few) ‘master regulators’, but actually by a set of polymorphic genes specific to the central nervous system
Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue
The discovery of expression quantitative trait loci (“eQTLs”) can
help to unravel genetic contributions to complex traits. We identified genetic
determinants of human liver gene expression variation using two independent
collections of primary tissue profiled with Agilent
(n = 206) and Illumina (n = 60)
expression arrays and Illumina SNP genotyping (550K), and we also incorporated
data from a published study (n = 266). We found that
∼30% of SNP-expression correlations in one study failed to replicate
in either of the others, even at thresholds yielding high reproducibility in
simulations, and we quantified numerous factors affecting reproducibility. Our
data suggest that drug exposure, clinical descriptors, and unknown factors
associated with tissue ascertainment and analysis have substantial effects on
gene expression and that controlling for hidden confounding variables
significantly increases replication rate. Furthermore, we found that
reproducible eQTL SNPs were heavily enriched near gene starts and ends, and
subsequently resequenced the promoters and 3′UTRs for 14 genes and tested
the identified haplotypes using luciferase assays. For three genes, significant
haplotype-specific in vitro functional differences correlated
directly with expression levels, suggesting that many bona fide
eQTLs result from functional variants that can be mechanistically isolated in a
high-throughput fashion. Finally, given our study design, we were able to
discover and validate hundreds of liver eQTLs. Many of these relate directly to
complex traits for which liver-specific analyses are likely to be relevant, and
we identified dozens of potential connections with disease-associated loci.
These included previously characterized eQTL contributors to diabetes, drug
response, and lipid levels, and they suggest novel candidates such as a role for
NOD2 expression in leprosy risk and
C2orf43 in prostate cancer. In general, the work presented
here will be valuable for future efforts to precisely identify and functionally
characterize genetic contributions to a variety of complex traits
- …
