2,059 research outputs found
Gamma-Ray Bursts in the Swift Era
With its rapid-response capability and multiwavelength complement of
instruments, the Swift satellite has transformed our physical understanding of
gamma-ray bursts (GRBs). Providing high-quality observations of hundreds of
bursts, and facilitating a wide range of follow-up observations within seconds
of each event, Swift has revealed an unforeseen richness in observed burst
properties, shed light on the nature of short-duration bursts, and helped
realize the promise of GRBs as probes of the processes and environments of star
formation out to the earliest cosmic epochs. These advances have opened new
perspectives on the nature and properties of burst central engines,
interactions with the burst environment from microparsec to gigaparsec scales,
and the possibilities for non-photonic signatures. Our understanding of these
extreme cosmic sources has thus advanced substantially; yet more than 40 years
after their discovery, GRBs continue to present major challenges on both
observational and theoretical fronts.Comment: 67 pages, 16 figures; ARAA, 2009;
http://arjournals.annualreviews.org/toc/astro/47/
A contemporaneous infrared flash from a long gamma-ray burst: an echo from the central engine
The explosion that results in a cosmic gamma-ray burst (GRB) is thought to
produce emission from two physical processes -- the activity of the central
engine gives rise to the high-energy emission of the burst through internal
shocking and the subsequent interaction of the flow with the external
environment produces long-wavelength afterglow. While afterglow observations
continue to refine our understanding of GRB progenitors and relativistic
shocks, gamma-ray observations alone have not yielded a clear picture of the
origin of the prompt emission nor details of the central engine. Only one
concurrent visible-light transient has been found and was associated with
emission from an external shock. Here we report the discovery of infrared (IR)
emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of
GRB 041219a. Our robotic telescope acquired 21 images during the active phase
of the burst, yielding the earliest multi-colour observations of any
long-wavelength emission associated with a GRB. Analysis of an initial IR pulse
suggests an origin consistent with internal shocks. This opens a new
possibility to study the central engine of GRBs with ground-based observations
at long wavelengths.Comment: Accepted to Nature on March 1, 2005. 9 pages, 4 figures, nature12.cls
and nature1.cls files included. This paper is under press embargo until print
publicatio
Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung
Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation
WIMP-nucleus scattering in chiral effective theory
We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions
in the framework of chiral effective theory. For scalar-mediated WIMP-quark
interactions, we calculate all the next-to-leading-order corrections to the
WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and
recoil-energy dependent shifts to the single-nucleon scalar form factors. As a
consequence, the scalar-mediated WIMP-nucleus cross-section cannot be
parameterized in terms of just two quantities, namely the neutron and proton
scalar form factors at zero momentum transfer, but additional parameters
appear, depending on the short-distance WIMP-quark interaction. Moreover,
multiplicative factorization of the cross-section into particle, nuclear and
astro-particle parts is violated. In practice, while the new effects are of the
natural size expected by chiral power counting, they become very important in
those regions of parameter space where the leading order WIMP-nucleus amplitude
is suppressed, including the so-called "isospin-violating dark matter" regime.
In these regions of parameter space we find order-of-magnitude corrections to
the total scattering rates and qualitative changes to the shape of recoil
spectra.Comment: 23 pages, 6 figures, 1 tabl
Energy input and response from prompt and early optical afterglow emission in gamma-ray bursts
The taxonomy of optical emission detected during the critical first few
minutes after the onset of a gamma-ray burst (GRB) defines two broad classes:
prompt optical emission correlated with prompt gamma-ray emission, and early
optical afterglow emission uncorrelated with the gamma-ray emission. The
standard theoretical interpretation attributes prompt emission to internal
shocks in the ultra-relativistic outflow generated by the internal engine;
early afterglow emission is attributed to shocks generated by interaction with
the surrounding medium. Here we report on observations of a bright GRB that,
for the first time, clearly show the temporal relationship and relative
strength of the two optical components. The observations indicate that early
afterglow emission can be understood as reverberation of the energy input
measured by prompt emission. Measurements of the early afterglow reverberations
therefore probe the structure of the environment around the burst, whereas the
subsequent response to late-time impulsive energy releases reveals how earlier
flaring episodes have altered the jet and environment parameters. Many GRBs are
generated by the death of massive stars that were born and died before the
Universe was ten per cent of its current age, so GRB afterglow reverberations
provide clues about the environments around some of the first stars.Comment: 13 pages, 4 figures, 1 table. Note: This paper has been accepted for
publication in Nature, but is embargoed for discussion in the popular press
until formal publication in Natur
Eye rivalry and object rivalry in the intact and split-brain
Both the eye of origin and the images themselves have been found to rival during binocular rivalry. We
presented traditional binocular rivalry stimuli (face to one eye, house to the other) and Diaz-Caneja stimuli
(half of each image to each eye) centrally to both a split-brain participant and a control group. With
traditional rivalry stimuli both the split-brain participant and age-matched controls perceived more
coherent percepts (synchronised across the hemifields) than non-synchrony, but our split-brain participant
perceived more non-synchrony than our controls. For rival stimuli in the Diaz-Caneja presentation
condition, object rivalry gave way to eye rivalry with all participants reporting more non-synchrony than
coherent percepts. We have shown that splitting the stimuli across the hemifields between the eyes leads
to greater eye than object rivalry, but that when traditional rival stimuli are split as the result of the severed
corpus callosum, traditional rivalry persists but to a lesser extent than in the intact brain. These
results suggest that communication between the early visual areas is not essential for synchrony in traditional
rivalry stimuli, and that other routes for interhemispheric interactions such as subcortical connections
may mediate rivalry in a traditional binocular rivalry condition
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Acute physiological stress down-regulates mRNA expressions of growth-related genes in coho salmon
Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish.Peer reviewed: YesNRC publication: Ye
- …
