15 research outputs found

    Stem cells and other innovative intra-articular therapies for osteoarthritis: what does the future hold?

    Get PDF
    Osteoarthritis (OA), the most common type of arthritis in the world, is associated with suffering due to pain, productivity loss, decreased mobility and quality of life. Systemic therapies available for OA are mostly symptom modifying and have potential gastrointestinal, renal, hepatic, and cardiac side effects. BMC Musculoskeletal Disorders recently published a study showing evidence of reparative effects demonstrated by homing of intra-articularly injected autologous bone marrow stem cells in damaged cartilage in an animal model of OA, along with clinical and radiographic benefit. This finding adds to the growing literature showing the potential benefit of intra-articular (IA) bone marrow stem cells. Other emerging potential IA therapies include IL-1 receptor antagonists, conditioned autologous serum, botulinum toxin, and bone morphogenetic protein-7. For each of these therapies, trial data in humans have been published, but more studies are needed to establish that they are safe and effective. Several additional promising new OA treatments are on the horizon, but challenges remain to finding safe and effective local and systemic therapies for OA

    O2_2 reduction and O2_2-induced damage at the active site of FeFe hydrogenase

    Get PDF
    International audienceFeFe hydrogenases are the most efficient H2_2-producing enzymes. However, inactivation by O2_2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2_2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2_2 results from the four-electron reduction of O2_2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2_2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage
    corecore