26 research outputs found
A mutate-and-map protocol for inferring base pairs in structured RNA
Chemical mapping is a widespread technique for structural analysis of nucleic
acids in which a molecule's reactivity to different probes is quantified at
single-nucleotide resolution and used to constrain structural modeling. This
experimental framework has been extensively revisited in the past decade with
new strategies for high-throughput read-outs, chemical modification, and rapid
data analysis. Recently, we have coupled the technique to high-throughput
mutagenesis. Point mutations of a base-paired nucleotide can lead to exposure
of not only that nucleotide but also its interaction partner. Carrying out the
mutation and mapping for the entire system gives an experimental approximation
of the molecules contact map. Here, we give our in-house protocol for this
mutate-and-map strategy, based on 96-well capillary electrophoresis, and we
provide practical tips on interpreting the data to infer nucleic acid
structure.Comment: 22 pages, 5 figure
Massively Parallel RNA Chemical Mapping with a Reduced Bias MAP-seq Protocol
Chemical mapping methods probe RNA structure by revealing and leveraging
correlations of a nucleotide's structural accessibility or flexibility with its
reactivity to various chemical probes. Pioneering work by Lucks and colleagues
has expanded this method to probe hundreds of molecules at once on an Illumina
sequencing platform, obviating the use of slab gels or capillary
electrophoresis on one molecule at a time. Here, we describe optimizations to
this method from our lab, resulting in the MAP-seq protocol (Multiplexed
Accessibility Probing read out through sequencing), version 1.0. The protocol
permits the quantitative probing of thousands of RNAs at once, by several
chemical modification reagents, on the time scale of a day using a table-top
Illumina machine. This method and a software package MAPseeker
(http://simtk.org/home/map_seeker) address several potential sources of bias,
by eliminating PCR steps, improving ligation efficiencies of ssDNA adapters,
and avoiding problematic heuristics in prior algorithms. We hope that the
step-by-step description of MAP-seq 1.0 will help other RNA mapping
laboratories to transition from electrophoretic to next-generation sequencing
methods and to further reduce the turnaround time and any remaining biases of
the protocol.Comment: 22 pages, 5 figure
Identification of Hammerhead Ribozymes in All Domains of Life Reveals Novel Structural Variations
Hammerhead ribozymes are small self-cleaving RNAs that promote strand scission by internal phosphoester transfer. Comparative sequence analysis was used to identify numerous additional representatives of this ribozyme class than were previously known, including the first representatives in fungi and archaea. Moreover, we have uncovered the first natural examples of “type II” hammerheads, and our findings reveal that this permuted form occurs in bacteria as frequently as type I and III architectures. We also identified a commonly occurring pseudoknot that forms a tertiary interaction critical for high-speed ribozyme activity. Genomic contexts of many hammerhead ribozymes indicate that they perform biological functions different from their known role in generating unit-length RNA transcripts of multimeric viroid and satellite virus genomes. In rare instances, nucleotide variation occurs at positions within the catalytic core that are otherwise strictly conserved, suggesting that core mutations are occasionally tolerated or preferred
Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function
Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant “downhill” pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the “new view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design
