32 research outputs found
Rosmarinic Acid, Active Component of Dansam-Eum Attenuates Ototoxicity of Cochlear Hair Cells through Blockage of Caspase-1 Activity
Cisplatin causes auditory impairment due to the apoptosis of auditory hair cells. There is no strategy to regulate ototoxicity by cisplatin thus far. Dansam-Eum (DSE) has been used for treating the central nerve system injury including hearing loss in Korea. However, disease-related scientific investigation by DSE has not been elucidated. Here, we demonstrated that DSE and its component rosmarinic acid (RA) were shown to inhibit apoptosis of the primary organ of Corti explants as well as the auditory cells. Administration of DSE and RA reduced the thresholds of the auditory brainstem response in cisplatin-injected mice. A molecular docking simulation and a kinetic assay show that RA controls the activity of caspase-1 by interaction with the active site of caspase-1. Pretreatment of RA inhibited caspase-1 downstream signal pathway, such as the activation of caspase-3 and 9, release of cytochrome c, translocation of apoptosis-inducing factor, up-regulation of Bax, down-regulation of Bcl-2, generation of reactive oxygen species, and activation of nuclear factor-κB. Anticancer activity by cisplatin was not affected by treatment with RA in SNU668, A549, HCT116, and HeLa cells but not B16F10 cells. These findings show that blocking a critical step by RA in apoptosis may be useful strategy to prevent harmful side effects of ototoxicity in patients with having to undergo chemotherapy
In vivo evolution of tumour cells after the generation of double-strand DNA breaks
In vitro, the ratio of single- to double-strand DNA breaks (DSB) and their absolute values determine the cell death pathway. The consequences of the generation of various numbers of DSB generated in vivo in tumour cells have been analysed in two different experimental tumour models. Synchronisation of DSB generation and control of their number have been achieved using different doses of bleomycin (BLM) and tumour cell permeabilisation by means of locally delivered electric pulses. According to BLM dose, different cell death pathways are observed. At a low therapeutic dose, a mitotic cell death pathway is detected. It is characterised by the appearance of 'atypical mitosis', TUNEL and caspase-3 positive, 24 h after the treatment, and later by the presence of typical apoptotic figures, mainly TUNEL positive but caspase-3 negative. Caspase-3 is thus an early marker of apoptosis. Mitotic cell death is also followed by lymphocytic infiltration reaction. At high doses of BLM, pseudoapoptosis is detected within a few minutes after the treatment. These cell death pathways are discussed as a function of the number of DSB generated, by comparison with previous results obtained in vitro using BLM or ionising radiation
Ethnographic methods for process evaluations of complex health behaviour interventions
Properties and Crystal Structure of Methylenetetrahydrofolate Reductase from Thermus thermophilus HB8
BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR) is one of the enzymes involved in homocysteine metabolism. Despite considerable genetic and clinical attention, the reaction mechanism and regulation of this enzyme are not fully understood because of difficult production and poor stability. While recombinant enzymes from thermophilic organisms are often stable and easy to prepare, properties of thermostable MTHFRs have not yet been reported. METHODOLOGY/PRINCIPAL FINDINGS: MTHFR from Thermus thermophilus HB8, a homologue of Escherichia coli MetF, has been expressed in E. coli and purified. The purified MTHFR was chiefly obtained as a heterodimer of apo- and holo-subunits, that is, one flavin adenine dinucleotide (FAD) prosthetic group bound per dimer. The crystal structure of the holo-subunit was quite similar to the β(8)α(8) barrel of E. coli MTHFR, while that of the apo-subunit was a previously unobserved closed form. In addition, the intersubunit interface of the dimer in the crystals was different from any of the subunit interfaces of the tetramer of E. coli MTHFR. Free FAD could be incorporated into the apo-subunit of the purified Thermus enzyme after purification, forming a homodimer of holo-subunits. Comparison of the crystal structures of the heterodimer and the homodimer revealed different intersubunit interfaces, indicating a large conformational change upon FAD binding. Most of the biochemical properties of the heterodimer and the homodimer were the same, except that the homodimer showed ≈50% activity per FAD-bound subunit in folate-dependent reactions. CONCLUSIONS/SIGNIFICANCE: The different intersubunit interfaces and rearrangement of subunits of Thermus MTHFR may be related to human enzyme properties, such as the allosteric regulation by S-adenosylmethionine and the enhanced instability of the Ala222Val mutant upon loss of FAD. Whereas E. coli MTHFR was the only structural model for human MTHFR to date, our findings suggest that Thermus MTHFR will be another useful model for this important enzyme
