1,369 research outputs found
On the Hierarchy of Block Deterministic Languages
A regular language is -lookahead deterministic (resp. -block
deterministic) if it is specified by a -lookahead deterministic (resp.
-block deterministic) regular expression. These two subclasses of regular
languages have been respectively introduced by Han and Wood (-lookahead
determinism) and by Giammarresi et al. (-block determinism) as a possible
extension of one-unambiguous languages defined and characterized by
Br\"uggemann-Klein and Wood. In this paper, we study the hierarchy and the
inclusion links of these families. We first show that each -block
deterministic language is the alphabetic image of some one-unambiguous
language. Moreover, we show that the conversion from a minimal DFA of a
-block deterministic regular language to a -block deterministic automaton
not only requires state elimination, and that the proof given by Han and Wood
of a proper hierarchy in -block deterministic languages based on this result
is erroneous. Despite these results, we show by giving a parameterized family
that there is a proper hierarchy in -block deterministic regular languages.
We also prove that there is a proper hierarchy in -lookahead deterministic
regular languages by studying particular properties of unary regular
expressions. Finally, using our valid results, we confirm that the family of
-block deterministic regular languages is strictly included into the one of
-lookahead deterministic regular languages by showing that any -block
deterministic unary language is one-unambiguous
Estimation of Surface Energy Fluxes from Bare Ground in a Tropical Station using Priestley Taylor Method
This investigation was designed to test the performance of Priestley Taylor method in the partitioning of the available energy into sensible and latent heat fluxes in a tropical site. Compared to eddy covariance measured fluxes, the conventional Priestley Taylor constant (αPT) of 1.25 gave low coefficient of determination and high bias error for both sensible and latent heat fluxes. It overestimated latent heat flux in the noon and afternoon but underestimated sensible heat flux. The bias error reduced and the coefficient of determination increased for sensible heat flux when αPT value was reduced to 1.0. The bias error for latent heat also reduced but the coefficient of determination did not change with the reduction in αPT value. The root mean square error reduced with the reduction in the αPT value. Compared to measured fluxes, coefficient of determination of sensible heat flux ranged from 0.82 to 0.90 while that of latent heat flux ranged from 0.78 to 0.9. Priestley Taylor method is recommended for partitioning of available energy into its component sensible and latent heat fluxes.Keywords: αPT value, energy, latent heat ,flu
Emotions and Digital Well-being. The rationalistic bias of social media design in online deliberations
In this chapter we argue that emotions are mediated in an incomplete way in online social media because of the heavy reliance on textual messages which fosters a rationalistic bias and an inclination towards less nuanced emotional expressions. This incompleteness can happen either by obscuring emotions, showing less than the original intensity, misinterpreting emotions, or eliciting emotions without feedback and context. Online interactions and deliberations tend to contribute rather than overcome stalemates and informational bubbles, partially due to prevalence of anti-social emotions. It is tempting to see emotions as being the cause of the problem of online verbal aggression and bullying. However, we argue that social media are actually designed in a predominantly rationalistic way, because of the reliance on text-based communication, thereby filtering out social emotions and leaving space for easily expressed antisocial emotions. Based on research on emotions that sees these as key ingredients to moral interaction and deliberation, as well as on research on text-based versus non-verbal communication, we propose a richer understanding of emotions, requiring different designs of online deliberation platforms. We propose that such designs should move from text-centred designs and should find ways to incorporate the complete expression of the full range of human emotions so that these can play a constructive role in online deliberations
HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer
Background: HAGE protein is a known immunogenic cancer-specific antigen. Methods: The biological, prognostic and predictive values of HAGE expression was studied using immunohistochemistry in three cohorts of patients with BC (n=2147): early primary (EP-BC; n=1676); primary oestrogen receptor-negative (PER-BC; n=275) treated with adjuvant anthracycline-combination therapies (Adjuvant-ACT); and primary locally advanced disease (PLA-BC) who received neo-adjuvant anthracycline-combination therapies (Neo-adjuvant-ACT; n=196). The relationship between HAGE expression and the tumour-infiltrating lymphocytes (TILs) in matched prechemotherapy and postchemotherapy samples were investigated. Results: Eight percent of patients with EP-BC exhibited high HAGE expression (HAGEþ) and was associated with aggressive clinico-pathological features (Ps<0.01). Furthermore, HAGEþexpression was associated with poor prognosis in both univariate and multivariate analysis (Ps<0.001). Patients with HAGE+ did not benefit from hormonal therapy in high-risk ER-positive disease. HAGE+ and TILs were found to be independent predictors for pathological complete response to neoadjuvant-ACT; P<0.001. A statistically significant loss of HAGE expression following neoadjuvant-ACT was found (P=0.000001), and progression-free survival was worse in those patients who had HAGE+ residual disease (P=0.0003). Conclusions: This is the first report to show HAGE to be a potential prognostic marker and a predictor of response to ACT in patients with BC
Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient
We compared autumn decomposition rates of European alder leaves at four sites along the Lasset–Hers River system, southern France, to test whether changes in litter decomposition rates from upstream (1,300 m elevation) to downstream (690 m) could be attributed to temperature-driven differences in microbial growth, shredder activity, or composition of the shredder community. Alder leaves lost 75–87% of original mass in 57 days, of which 46–67% could be attributed to microbial metabolism and 8–29% to shredder activity, with no trend along the river. Mass loss rates in both fine-mesh (excluding shredders) and coarse-mesh (including shredders) bags were faster at warm, downstream sites (mean daily temperature 7–8°C) than upstream (mean 1–2°C), but the differ- ence disappeared when rates were expressed in heat units to remove the temperature effect. Mycelial biomass did not correlate with mass loss rates. Faster mass loss rates upstream, after temperature correction, evidently arise from more efficient shredding by Nemourid stoneflies than by the Leuctra-dominated assemblage downstream. The influence of water temperature on decomposition rate is therefore expressed both directly, through microbial metabolism, and indirectly, through the structure of shredder commu- nities. These influences are evident even in cold water where temperature variation is small
A 3D numerical approach to assess the temporal evolution of settlement damage to buildings on cavities subject to weathering
The goal of this paper is to show how a recently developed advanced hydro-chemo-mechanical (HCM) coupled constitutive and numerical model for soft rocks can be applied to predict the temporal evolution of settlement damage to buildings on cavities subject to weathering. In particular, a building damage index (BDI) and its evolution with time is proposed. The definition of the BDI is inspired by the work of Boscardin and Cording (1989) and uses the surface differential settlements obtained by finite element (FE) analyses to assess how far a building is from a non-acceptable service condition. By modelling the reactive transport of chemical species in 3D and using a coupled Chemo-Hydro-Mechanical (CHM) constitutive and numerical model, it is possible to simulate weathering scenarios and monitor the temporal evolution of surface settlements making the BDI time dependent. This approach is applied to evaluate the damage evolution of two buildings lying on two anthropic caves in a calcarenite deposit belonging to the Calcarenite di Gravina Formation. Standard and advanced experimental tests are performed on the in-situ material and the results are used to calibrate the constitutive model. The soundness of both constitutive relationship and reactive transport solver is subsequently tested by simulating two laboratory scale boundary value experiments. The first is a model footing test on dry and wet calcarenite while the second is a small scale pillar that, after the saturation induced short-term water weakening, fails due to a long term dissolution weathering process. Finally, both 2 and 3D coupled finite element (FE) analyses simulating different weathering scenarios and corresponding settlements affecting the buildings above the considered cavities are presented. Particular attention is placed on assessing the BDI and its temporal evolution
Characterisation of Gut Microbiota in Ossabaw and Göttingen Minipigs as Models of Obesity and Metabolic Syndrome
Recent evidence suggests that the gut microbiota is an important contributing factor to obesity and obesity related metabolic disorders, known as the metabolic syndrome. The aim of this study was to characterise the intestinal microbiota in two pig models of obesity namely Göttingen minipigs and the Ossabaw minipigs.The cecal, ileal and colonic microbiota from lean and obese Osabaw and Göttingen minipigs were investigated by Illumina-based sequencing and by high throughput qPCR, targeting the 16S rRNA gene in different phylogenetic groups of bacteria. The weight gain through the study was significant in obese Göttingen and Ossabaw minipigs. The lean Göttingen minipigs' cecal microbiota contained significantly higher abundance of Firmicutes (P<0.006), Akkermensia (P<0.01) and Methanovibribacter (P<0.01) than obese Göttingen minipigs. The obese Göttingen cecum had higher abundances of the phyla Spirochaetes (P<0.03), Tenericutes (P<0.004), Verrucomicrobia (P<0.005) and the genus Bacteroides (P<0.001) compared to lean minipigs. The relative proportion of Clostridium cluster XIV was 7.6-fold higher in cecal microbiota of obese Göttingen minipigs as compared to lean. Obese Ossabaw minipigs had a higher abundance of Firmicutes in terminal ileum and lower abundance of Bacteroidetes in colon than lean Ossabaw minipigs (P<0.01). Obese Ossabaws had significantly lower abundances of the genera Prevotella and Lactobacillus and higher abundance of Clostridium in their colon than the lean Ossabaws. Overall, the Göttingen and Ossabaw minipigs displayed different microbial communities in response to diet-induced obesity in the different sections of their intestine.Obesity-related changes in the composition of the gut microbiota were found in lean versus obese Göttingen and Ossabaw minipigs. In both pig models diet seems to be the defining factor that shapes the gut microbiota as observed by changes in different bacteria divisions between lean and obese minipigs
Scaling properties of protein family phylogenies
One of the classical questions in evolutionary biology is how evolutionary
processes are coupled at the gene and species level. With this motivation, we
compare the topological properties (mainly the depth scaling, as a
characterization of balance) of a large set of protein phylogenies with a set
of species phylogenies. The comparative analysis shows that both sets of
phylogenies share remarkably similar scaling behavior, suggesting the
universality of branching rules and of the evolutionary processes that drive
biological diversification from gene to species level. In order to explain such
generality, we propose a simple model which allows us to estimate the
proportion of evolvability/robustness needed to approximate the scaling
behavior observed in the phylogenies, highlighting the relevance of the
robustness of a biological system (species or protein) in the scaling
properties of the phylogenetic trees. Thus, the rules that govern the
incapability of a biological system to diversify are equally relevant both at
the gene and at the species level.Comment: Replaced with final published versio
Social representations and the politics of participation
Recent work has called for the integration of different perspectives into the field of political psychology (Haste, 2012). This chapter suggests that one possible direction that such efforts can take is studying the role that social representations theory (SRT) can play in understanding political participation and social change. Social representations are systems of common-sense knowledge and social practice; they provide the lens through which to view and create social and political realities, mediate people's relations with these sociopolitical worlds and defend cultural and political identities. Social representations are therefore key for conceptualising participation as the activity that locates individuals and social groups in their sociopolitical world. Political participation is generally seen as conditional to membership of sociopolitical groups and therefore is often linked to citizenship. To be a citizen of a society or a member of any social group one has to participate as such. Often political participation is defined as the ability to communicate one's views to the political elite or to the political establishment (Uhlaner, 2001), or simply explicit involvement in politics and electoral processes (Milbrath, 1965). However, following scholars on ideology (Eagleton, 1991; Thompson, 1990) and social knowledge (Jovchelovitch, 2007), we extend our understanding of political participation to all social relations and also develop a more agentic model where individuals and groups construct, develop and resist their own views, ideas and beliefs. We thus adopt a broader approach to participation in comparison to other political-psychological approaches, such as personality approaches (e.g. Mondak and Halperin, 2008) and cognitive approaches or, more recently, neuropsychological approaches (Hatemi and McDermott, 2012). We move away from a focus on the individual's political behaviour and its antecedents and outline an approach that focuses on the interaction between psychological and political phenomena (Deutsch and Kinnvall, 2002) through examining the politics of social knowledge
Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications
OBJECTIVES: Juvenile idiopathic arthritis (JIA) is a heterogeneous group of conditions unified by the presence of chronic childhood arthritis without an identifiable cause. Systemic JIA (sJIA) is a rare form of JIA characterised by systemic inflammation. sJIA is distinguished from other forms of JIA by unique clinical features and treatment responses that are similar to autoinflammatory diseases. However, approximately half of children with sJIA develop destructive, long-standing arthritis that appears similar to other forms of JIA. Using genomic approaches, we sought to gain novel insights into the pathophysiology of sJIA and its relationship with other forms of JIA. METHODS: We performed a genome-wide association study of 770 children with sJIA collected in nine countries by the International Childhood Arthritis Genetics Consortium. Single nucleotide polymorphisms were tested for association with sJIA. Weighted genetic risk scores were used to compare the genetic architecture of sJIA with other JIA subtypes. RESULTS: The major histocompatibility complex locus and a locus on chromosome 1 each showed association with sJIA exceeding the threshold for genome-wide significance, while 23 other novel loci were suggestive of association with sJIA. Using a combination of genetic and statistical approaches, we found no evidence of shared genetic architecture between sJIA and other common JIA subtypes. CONCLUSIONS: The lack of shared genetic risk factors between sJIA and other JIA subtypes supports the hypothesis that sJIA is a unique disease process and argues for a different classification framework. Research to improve sJIA therapy should target its unique genetics and specific pathophysiological pathways
- …
