50 research outputs found
Serum CEA and CA 15-3 as prognostic factors in primary breast cancer
In the present study, we investigated the association of the serum levels of the tumour markers carcinoembryonic antigen and cancer antigen 15-3 with disease free survival and death from disease in 1046 women with breast cancer without metastases at the time of primary diagnosis in relation to age and the established prognostic factors tumour size, lymph node status, histological grading and hormone receptor status. We found that elevated pre-operative serum marker values were correlated with early relapse (cancer antigen 15-3; P=0.0003) and death from disease (carcinoembryonic antigen, cancer antigen 15-3; P=0.0001 both) in univariate analyses. By comparing pre- and post-operative values we found a decline in values post-surgery. In those patients where marker levels of carcinoembryonic antigen decreased more than 33%, a significantly higher risk for relapse and death from disease (both P=0.0001) in univariate analyses was observed. In multivariate analysis this decrease of carcinoembryonic antigen proved to be an independent prognostic factor. The results for cancer antigen 15-3 were comparable to carcinoembryonic antigen in univariate analyses but showed no significance in multivariate analysis. In this study the post-operative decrease of the serum tumour marker carcinoembryonic antigen was a strong independent prognostic factor for disease free survival and death from disease in breast cancer patients
Mapping of quantitative trait loci for flesh colour and growth traits in Atlantic salmon (Salmo salar)
<p>Abstract</p> <p>Background</p> <p>Flesh colour and growth related traits in salmonids are both commercially important and of great interest from a physiological and evolutionary perspective. The aim of this study was to identify quantitative trait loci (QTL) affecting flesh colour and growth related traits in an F2 population derived from an isolated, landlocked wild population in Norway (Byglands Bleke) and a commercial production population.</p> <p>Methods</p> <p>One hundred and twenty-eight informative microsatellite loci distributed across all 29 linkage groups in Atlantic salmon were genotyped in individuals from four F2 families that were selected from the ends of the flesh colour distribution. Genotyping of 23 additional loci and two additional families was performed on a number of linkage groups harbouring putative QTL. QTL analysis was performed using a line-cross model assuming fixation of alternate QTL alleles and a half-sib model with no assumptions about the number and frequency of QTL alleles in the founder populations.</p> <p>Results</p> <p>A moderate to strong phenotypic correlation was found between colour, length and weight traits. In total, 13 genome-wide significant QTL were detected for all traits using the line-cross model, including three genome-wide significant QTL for flesh colour (Chr 6, Chr 26 and Chr 4). In addition, 32 suggestive QTL were detected (chromosome-wide P < 0.05). Using the half-sib model, six genome-wide significant QTL were detected for all traits, including two for flesh colour (Chr 26 and Chr 4) and 41 suggestive QTL were detected (chromosome-wide P < 0.05). Based on the half-sib analysis, these two genome-wide significant QTL for flesh colour explained 24% of the phenotypic variance for this trait.</p> <p>Conclusions</p> <p>A large number of significant and suggestive QTL for flesh colour and growth traits were found in an F2 population of Atlantic salmon. Chr 26 and Chr 4 presented the strongest evidence for significant QTL affecting flesh colour, while Chr 10, Chr 5, and Chr 4 presented the strongest evidence for significant QTL affecting growth traits (length and weight). These QTL could be strong candidates for use in marker-assisted selection and provide a starting point for further characterisation of the genetic components underlying flesh colour and growth.</p
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
The effect of eye movement desensitization and reprocessing on the fear of hypoglycemia in type 2 diabetic patients: a randomized clinical trial
Biomimetic Alkene Epoxidation and Alkane Hydroxylation with Sodium Periodate Catalyzed by Mn(III)-salen Supported on Amberlite IRA-200
T cell–depleted cultured pediatric thymus tissue as a model for some aspects of human age-related thymus involution
Human age-related thymus involution is characterized by loss of developing thymocytes and the thymic epithelial network that supports them, with replacement by adipose tissue. The mechanisms that drive these changes are difficult to study in vivo due to constant trafficking to and from the thymus. We hypothesized that the loss of thymocytes that occurs during human thymic organ cultures could model some aspects of thymus involution and begin to identify mechanisms that drive age-related changes in the thymic microenvironment. Potential mechanistically important candidate molecules were initially identified by screening conditioned media from human thymus organ cultures using antibody microarrays. These candidates were further validated using cultured tissue extracts and conditioned media. Results were compared with gene expression studies from a panel of well-characterized (non-cultured) human thymus tissues from human donors aged 5 days to 78 years. L-selectin released into conditioned media was identified as a biomarker for the content of viable thymocytes within the cultured thymus. Levels of the chemokines CCL21 and CXCL12, likely produced by surviving thymic epithelial cells, increased markedly in conditioned media as thymocytes were lost during culture. Native non-cultured thymus from adults older than 18 years also showed a strong trend toward increased CCL21 expression, in conjunction with significant decreases in thymocyte-related mRNAs compared with thymus from subjects younger than 18 years. Together, these findings demonstrate that use of postnatal human thymus organ cultures can model some aspects of human age-related thymic involution. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11357-020-00301-1
