15 research outputs found
Finding one's way in proteomics: a protein species nomenclature
Our knowledge of proteins has greatly improved in recent years, driven by new technologies in the fields of molecular biology and proteome research. It has become clear that from a single gene not only one single gene product but many different ones - termed protein species - are generated, all of which may be associated with different functions. Nonetheless, an unambiguous nomenclature for describing individual protein species is still lacking. With the present paper we therefore propose a systematic nomenclature for the comprehensive description of protein species. The protein species nomenclature is flexible and adaptable to every level of knowledge and of experimental data in accordance with the exact chemical composition of individual protein species. As a minimum description the entry name (gene name + species according to the UniProt knowledgebase) can be used, if no analytical data about the target protein species are available
Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study
OBJECTIVES: To describe the characteristics and outcomes of patients with acute respiratory distress syndrome with or without spontaneous breathing and to investigate whether the effects of spontaneous breathing on outcome depend on acute respiratory distress syndrome severity. DESIGN: Planned secondary analysis of a prospective, observational, multicentre cohort study. SETTING: International sample of 459 ICUs from 50 countries. PATIENTS: Patients with acute respiratory distress syndrome and at least 2 days of invasive mechanical ventilation and available data for the mode of mechanical ventilation and respiratory rate for the 2 first days. INTERVENTIONS: Analysis of patients with and without spontaneous breathing, defined by the mode of mechanical ventilation and by actual respiratory rate compared with set respiratory rate during the first 48 hours of mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: Spontaneous breathing was present in 67% of patients with mild acute respiratory distress syndrome, 58% of patients with moderate acute respiratory distress syndrome, and 46% of patients with severe acute respiratory distress syndrome. Patients with spontaneous breathing were older and had lower acute respiratory distress syndrome severity, Sequential Organ Failure Assessment scores, ICU and hospital mortality, and were less likely to be diagnosed with acute respiratory distress syndrome by clinicians. In adjusted analysis, spontaneous breathing during the first 2 days was not associated with an effect on ICU or hospital mortality (33% vs 37%; odds ratio, 1.18 [0.92-1.51]; p = 0.19 and 37% vs 41%; odds ratio, 1.18 [0.93-1.50]; p = 0.196, respectively ). Spontaneous breathing was associated with increased ventilator-free days (13 [0-22] vs 8 [0-20]; p = 0.014) and shorter duration of ICU stay (11 [6-20] vs 12 [7-22]; p = 0.04). CONCLUSIONS: Spontaneous breathing is common in patients with acute respiratory distress syndrome during the first 48 hours of mechanical ventilation. Spontaneous breathing is not associated with worse outcomes and may hasten liberation from the ventilator and from ICU. Although these results support the use of spontaneous breathing in patients with acute respiratory distress syndrome independent of acute respiratory distress syndrome severity, the use of controlled ventilation indicates a bias toward use in patients with higher disease severity. In addition, because the lack of reliable data on inspiratory effort in our study, prospective studies incorporating the magnitude of inspiratory effort and adjusting for all potential severity confounders are required
Long-Term Evolution of Brainstem Electrical Evoked Responses to Sound after Restricted Ablation of the Auditory Cortex
Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier
The dynamic adjustment of hearing sensitivity and frequency selectivity is mediated by the medial olivocochlear efferent reflex, which suppresses the gain of the ‘cochlear amplifier' in each ear. Such efferent feedback is important for promoting discrimination of sounds in background noise, sound localization and protecting the cochleae from acoustic overstimulation. However, the sensory driver for the olivocochlear reflex is unknown. Here, we resolve this longstanding question using a mouse model null for the gene encoding the type III intermediate filament peripherin (Prph). Prph((−/−)) mice lacked type II spiral ganglion neuron innervation of the outer hair cells, whereas innervation of the inner hair cells by type I spiral ganglion neurons was normal. Compared with Prph((+/+)) controls, both contralateral and ipsilateral olivocochlear efferent-mediated suppression of the cochlear amplifier were absent in Prph((−/−)) mice, demonstrating that outer hair cells and their type II afferents constitute the sensory drive for the olivocochlear efferent reflex
The Nesprin Family Member ANC-1 Regulates Synapse Formation and Axon Termination by Functioning in a Pathway with RPM-1 and β-Catenin
Auditory Processing Disorders with and without Central Auditory Discrimination Deficits
Auditory processing disorder (APD) is defined as a processing deficit in the auditory modality and spans multiple processes. To date, APD diagnosis is mostly based on the utilization of speech material. Adequate nonspeech tests that allow differentiation between an actual central hearing disorder and related disorders such as specific language impairments are still not adequately available. In the present study, 84 children between 6 and 17 years of age (clinical group), referred to three audiological centers for APD diagnosis, were evaluated with standard audiological tests and additional auditory discrimination tests. Latter tests assessed the processing of basic acoustic features at two different stages of the ascending central auditory system: (1) auditory brainstem processing was evaluated by quantifying interaural frequency, level, and signal duration discrimination (interaural tests). (2) Diencephalic/telencephalic processing was assessed by varying the same acoustic parameters (plus signals with sinusoidal amplitude modulation), but presenting the test signals in conjunction with noise pulses to the contralateral ear (dichotic(signal/noise) tests). Data of children in the clinical group were referenced to normative data obtained from more than 300 normally developing healthy school children. The results in the audiological and the discrimination tests diverged widely. Of the 39 children that were diagnosed with APD in the audiological clinic, 30 had deficits in auditory performance. Even more alarming was the fact that of the 45 children with a negative APD diagnosis, 32 showed clear signs of a central hearing deficit. Based on these results, we suggest revising current diagnostic procedure to evaluate APD in order to more clearly differentiate between central auditory processing deficits and higher-order (cognitive and/or language) processing deficits
