2,125 research outputs found

    Chiral perturbation theory in a magnetic background - finite-temperature effects

    Full text link
    We consider chiral perturbation theory for SU(2) at finite temperature TT in a constant magnetic background BB. We compute the thermal mass of the pions and the pion decay constant to leading order in chiral perturbation theory in the presence of the magnetic field. The magnetic field gives rise to a splitting between Mπ0M_{\pi^0} and Mπ±M_{\pi^{\pm}} as well as between Fπ0F_{\pi^0} and Fπ±F_{\pi^{\pm}}. We also calculate the free energy and the quark condensate to next-to-leading order in chiral perturbation theory. Both the pion decay constants and the quark condensate are decreasing slower as a function of temperature as compared to the case with vanishing magnetic field. The latter result suggests that the critical temperature TcT_c for the chiral transition is larger in the presence of a constant magnetic field. The increase of TcT_c as a function of BB is in agreement with most model calculations but in disagreement with recent lattice calculations.Comment: 24 pages and 9 fig

    Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines

    Get PDF
    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2

    Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe

    Get PDF
    Acknowledgements We thank the Archaeological State Museum Schleswig-Holstein, the Archaeological State Offices of Brandenburg, Lower Saxony and Saxony and the following individuals who provided sample material: Betty Arndt, Jo¨rg Ewersen, Frederick Feulner, Susanne Hanik, Ru¨diger Krause, Jochen Reinhard, Uwe Reuter, Karl-Heinz Ro¨hrig, Maguerita Scha¨fer, Jo¨rg Schibler, Reinhold Schoon, Regina Smolnik, Thomas Terberger and Ingrid Ulbricht. We are grateful to Ulrich Schmo¨lcke, Michael Forster, Peter Forster and Aikaterini Glykou for their support and comments on the manuscript. We also thank many institutions and individuals that provided sample material and access to collections, especially the curators of the Museum fu¨r Naturkunde, Berlin; Muse´um National d0 Histoire Naturelle, Paris; Smithsonian Institution, National Museum of Natural History, Washington D.C.; Zoologische Staatssammlung, Mu¨nchen; Museum fu¨r Haustierkunde, Halle; the American Museum of Natural History, New-York. This work was funded by the Graduate School ‘Human Development in Landscapes’ at Kiel University (CAU) and supported by NERC project Grant NE/F003382/1. Radiocarbon dating was carried out at the Leibniz Laboratory, CAU. This work is licensed under a Creative Commons AttributionNonCommercial-NoDerivs 3.0 Unported License.Peer reviewedPublisher PD

    Optimisation of the Schizosaccharomyces pombe urg1 expression system

    Get PDF
    The ability to study protein function in vivo often relies on systems that regulate the presence and absence of the protein of interest. Two limitations for previously described transcriptional control systems that are used to regulate protein expression in fission yeast are: the time taken for inducing conditions to initiate transcription and the ability to achieve very low basal transcription in the "OFF-state". In previous work, we described a Cre recombination-mediated system that allows the rapid and efficient regulation of any gene of interest by the urg1 promoter, which has a dynamic range of approximately 75-fold and which is induced within 30-60 minutes of uracil addition. In this report we describe easy-to-use and versatile modules that can be exploited to significantly tune down P urg1 "OFF-levels" while maintaining an equivalent dynamic range. We also provide plasmids and tools for combining P urg1 transcriptional control with the auxin degron tag to help maintain a null-like phenotype. We demonstrate the utility of this system by improved regulation of HO-dependent site-specific DSB formation, by the regulation Rtf1-dependent replication fork arrest and by controlling Rhp18(Rad18)-dependent post replication repair

    Distinguishing among Technicolor/Warped Scenarios in Dileptons

    Get PDF
    Models of dynamical electroweak symmetry breaking usually include new spin-1 resonances, whose couplings and masses have to satisfy electroweak precision tests. We propose to use dilepton searches to probe the underlying structure responsible for satisfying these. Using the invariant mass spectrum and charge asymmetry, we can determine the number, parity, and isospin of these resonances. We pick three models of strong/warped symmetry breaking, and show that each model produces specific features that reflect this underlying structure of electroweak symmetry breaking and cancellations.Comment: Added missing referenc

    Centralized Modularity of N-Linked Glycosylation Pathways in Mammalian Cells

    Get PDF
    Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are attached to proteins and lipids. Glycans are involved in fundamental biological processes, including protein folding and clearance, cell proliferation and apoptosis, development, immune responses, and pathogenesis. One of the major types of glycans, N-linked glycans, is formed by sequential attachments of monosaccharides to proteins by a limited number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thereby generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigated the large-scale organization of such N-linked glycosylation pathways in mammalian cells. The N-linked glycosylation pathways are extremely modular, and are composed of cohesive topological modules that directly branch from a common upstream pathway of glycan synthesis. This unique structural property allows the glycan production between modules to be controlled by the upstream region. Although the enzymes act on multiple glycan substrates, indicating cross-talk between modules, the impact of the cross-talk on the module-specific enhancement of glycan synthesis may be confined within a moderate range by transcription-level control. The findings of the present study provide experimentally-testable predictions for glycosylation processes, and may be applicable to therapeutic glycoprotein engineering

    Singular values of the Dirac operator in dense QCD-like theories

    Full text link
    We study the singular values of the Dirac operator in dense QCD-like theories at zero temperature. The Dirac singular values are real and nonnegative at any nonzero quark density. The scale of their spectrum is set by the diquark condensate, in contrast to the complex Dirac eigenvalues whose scale is set by the chiral condensate at low density and by the BCS gap at high density. We identify three different low-energy effective theories with diquark sources applicable at low, intermediate, and high density, together with their overlapping domains of validity. We derive a number of exact formulas for the Dirac singular values, including Banks-Casher-type relations for the diquark condensate, Smilga-Stern-type relations for the slope of the singular value density, and Leutwyler-Smilga-type sum rules for the inverse singular values. We construct random matrix theories and determine the form of the microscopic spectral correlation functions of the singular values for all nonzero quark densities. We also derive a rigorous index theorem for non-Hermitian Dirac operators. Our results can in principle be tested in lattice simulations.Comment: 3 references added, version published in JHE

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table

    Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels

    Get PDF
    Simultaneous analysis of economic and environmental performance of horticultural crop production requires qualified assumptions on the effect of management options, and particularly of nitrogen (N) fertilisation, on the net returns of the farm. Dynamic soil-plant-environment simulation models for agro-ecosystems are frequently applied to predict crop yield, generally as dry matter per area, and the environmental impact of production. Economic analysis requires conversion of yields to fresh marketable weight, which is not easy to calculate for vegetables, since different species have different properties and special market requirements. Furthermore, the marketable part of many vegetables is dependent on N availability during growth, which may lead to complete crop failure under sub-optimal N supply in tightly calculated N fertiliser regimes or low-input systems. In this paper we present two methods for converting simulated total dry matter to marketable fresh matter yield for various vegetables and European growth conditions, taking into consideration the effect of N supply: (i) a regression based function for vegetables sold as bulk or bunching ware and (ii) a population approach for piecewise sold row crops. For both methods, to be used in the context of a dynamic simulation model, parameter values were compiled from a literature survey. Implemented in such a model, both algorithms were tested against experimental field data, yielding an Index of Agreement of 0.80 for the regression strategy and 0.90 for the population strategy. Furthermore, the population strategy was capable of reflecting rather well the effect of crop spacing on yield and the effect of N supply on product grading
    corecore