2,125 research outputs found
Chiral perturbation theory in a magnetic background - finite-temperature effects
We consider chiral perturbation theory for SU(2) at finite temperature in
a constant magnetic background . We compute the thermal mass of the pions
and the pion decay constant to leading order in chiral perturbation theory in
the presence of the magnetic field. The magnetic field gives rise to a
splitting between and as well as between
and . We also calculate the free energy and the
quark condensate to next-to-leading order in chiral perturbation theory. Both
the pion decay constants and the quark condensate are decreasing slower as a
function of temperature as compared to the case with vanishing magnetic field.
The latter result suggests that the critical temperature for the chiral
transition is larger in the presence of a constant magnetic field. The increase
of as a function of is in agreement with most model calculations but
in disagreement with recent lattice calculations.Comment: 24 pages and 9 fig
Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines
We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2
Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe
Acknowledgements We thank the Archaeological State Museum Schleswig-Holstein, the Archaeological State Offices of Brandenburg, Lower Saxony and Saxony and the following individuals who provided sample material: Betty Arndt, Jo¨rg Ewersen, Frederick Feulner, Susanne Hanik, Ru¨diger Krause, Jochen Reinhard, Uwe Reuter, Karl-Heinz Ro¨hrig, Maguerita Scha¨fer, Jo¨rg Schibler, Reinhold Schoon, Regina Smolnik, Thomas Terberger and Ingrid Ulbricht. We are grateful to Ulrich Schmo¨lcke, Michael Forster, Peter Forster and Aikaterini Glykou for their support and comments on the manuscript. We also thank many institutions and individuals that provided sample material and access to collections, especially the curators of the Museum fu¨r Naturkunde, Berlin; Muse´um National d0 Histoire Naturelle, Paris; Smithsonian Institution, National Museum of Natural History, Washington D.C.; Zoologische Staatssammlung, Mu¨nchen; Museum fu¨r Haustierkunde, Halle; the American Museum of Natural History, New-York. This work was funded by the Graduate School ‘Human Development in Landscapes’ at Kiel University (CAU) and supported by NERC project Grant NE/F003382/1. Radiocarbon dating was carried out at the Leibniz Laboratory, CAU. This work is licensed under a Creative Commons AttributionNonCommercial-NoDerivs 3.0 Unported License.Peer reviewedPublisher PD
Optimisation of the Schizosaccharomyces pombe urg1 expression system
The ability to study protein function in vivo often relies on systems that regulate the presence and absence of the protein of interest. Two limitations for previously described transcriptional control systems that are used to regulate protein expression in fission yeast are: the time taken for inducing conditions to initiate transcription and the ability to achieve very low basal transcription in the "OFF-state". In previous work, we described a Cre recombination-mediated system that allows the rapid and efficient regulation of any gene of interest by the urg1 promoter, which has a dynamic range of approximately 75-fold and which is induced within 30-60 minutes of uracil addition. In this report we describe easy-to-use and versatile modules that can be exploited to significantly tune down P urg1 "OFF-levels" while maintaining an equivalent dynamic range. We also provide plasmids and tools for combining P urg1 transcriptional control with the auxin degron tag to help maintain a null-like phenotype. We demonstrate the utility of this system by improved regulation of HO-dependent site-specific DSB formation, by the regulation Rtf1-dependent replication fork arrest and by controlling Rhp18(Rad18)-dependent post replication repair
Distinguishing among Technicolor/Warped Scenarios in Dileptons
Models of dynamical electroweak symmetry breaking usually include new spin-1
resonances, whose couplings and masses have to satisfy electroweak precision
tests. We propose to use dilepton searches to probe the underlying structure
responsible for satisfying these. Using the invariant mass spectrum and charge
asymmetry, we can determine the number, parity, and isospin of these
resonances. We pick three models of strong/warped symmetry breaking, and show
that each model produces specific features that reflect this underlying
structure of electroweak symmetry breaking and cancellations.Comment: Added missing referenc
Centralized Modularity of N-Linked Glycosylation Pathways in Mammalian Cells
Glycosylation is a highly complex process to produce a diverse repertoire of
cellular glycans that are attached to proteins and lipids. Glycans are involved
in fundamental biological processes, including protein folding and clearance,
cell proliferation and apoptosis, development, immune responses, and
pathogenesis. One of the major types of glycans, N-linked glycans, is formed by
sequential attachments of monosaccharides to proteins by a limited number of
enzymes. Many of these enzymes can accept multiple N-linked glycans as
substrates, thereby generating a large number of glycan intermediates and their
intermingled pathways. Motivated by the quantitative methods developed in
complex network research, we investigated the large-scale organization of such
N-linked glycosylation pathways in mammalian cells. The N-linked glycosylation
pathways are extremely modular, and are composed of cohesive topological
modules that directly branch from a common upstream pathway of glycan
synthesis. This unique structural property allows the glycan production between
modules to be controlled by the upstream region. Although the enzymes act on
multiple glycan substrates, indicating cross-talk between modules, the impact
of the cross-talk on the module-specific enhancement of glycan synthesis may be
confined within a moderate range by transcription-level control. The findings
of the present study provide experimentally-testable predictions for
glycosylation processes, and may be applicable to therapeutic glycoprotein
engineering
Singular values of the Dirac operator in dense QCD-like theories
We study the singular values of the Dirac operator in dense QCD-like theories
at zero temperature. The Dirac singular values are real and nonnegative at any
nonzero quark density. The scale of their spectrum is set by the diquark
condensate, in contrast to the complex Dirac eigenvalues whose scale is set by
the chiral condensate at low density and by the BCS gap at high density. We
identify three different low-energy effective theories with diquark sources
applicable at low, intermediate, and high density, together with their
overlapping domains of validity. We derive a number of exact formulas for the
Dirac singular values, including Banks-Casher-type relations for the diquark
condensate, Smilga-Stern-type relations for the slope of the singular value
density, and Leutwyler-Smilga-type sum rules for the inverse singular values.
We construct random matrix theories and determine the form of the microscopic
spectral correlation functions of the singular values for all nonzero quark
densities. We also derive a rigorous index theorem for non-Hermitian Dirac
operators. Our results can in principle be tested in lattice simulations.Comment: 3 references added, version published in JHE
Impact Factor: outdated artefact or stepping-stone to journal certification?
A review of Garfield's journal impact factor and its specific implementation
as the Thomson Reuters Impact Factor reveals several weaknesses in this
commonly-used indicator of journal standing. Key limitations include the
mismatch between citing and cited documents, the deceptive display of three
decimals that belies the real precision, and the absence of confidence
intervals. These are minor issues that are easily amended and should be
corrected, but more substantive improvements are needed. There are indications
that the scientific community seeks and needs better certification of journal
procedures to improve the quality of published science. Comprehensive
certification of editorial and review procedures could help ensure adequate
procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table
Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels
Simultaneous analysis of economic and environmental performance of horticultural crop production requires qualified assumptions on the effect of management options, and particularly of nitrogen (N) fertilisation, on the net returns of the farm. Dynamic soil-plant-environment simulation models for agro-ecosystems are frequently applied to predict crop yield, generally as dry matter per area, and the environmental impact of production. Economic analysis requires conversion of yields to fresh marketable weight, which is not easy to calculate for vegetables, since different species have different properties and special market requirements. Furthermore, the marketable part of many vegetables is dependent on N availability during growth, which may lead to complete crop failure under sub-optimal N supply in tightly calculated N fertiliser regimes or low-input systems. In this paper we present two methods for converting simulated total dry matter to marketable fresh matter yield for various vegetables and European growth conditions, taking into consideration the effect of N supply: (i) a regression based function for vegetables sold as bulk or bunching ware and (ii) a population approach for piecewise sold row crops. For both methods, to be used in the context of a dynamic simulation model, parameter values were compiled from a literature survey. Implemented in such a model, both algorithms were tested against experimental field data, yielding an Index of Agreement of 0.80 for the regression strategy and 0.90 for the population strategy. Furthermore, the population strategy was capable of reflecting rather well the effect of crop spacing on yield and the effect of N supply on product grading
Deep saltwater in Chalk of North-West Europe: origin, interface characteristics and development over geological time
- …
