88 research outputs found

    A 37-year-old woman presenting with impaired visual function during antituberculosis drug therapy: a case report

    Get PDF
    Abstract Introduction Combination antituberculosis drug therapy remains the mainstay of treating tuberculosis. Unfortunately, antituberculosis drugs produce side effects including (toxic) impaired visual function, which may be irreversible. We report a case of antituberculosis-drug-induced impaired visual function that was reversed following early detection and attention. Case presentation A 37-year-old Yoruba woman, weighing 48 kg, presented to our facility with impaired visual functions and mild sensory polyneuropathy in about the fourth month of antituberculosis treatment. Her therapy comprised ethambutol 825 mg, isoniazid 225 mg, rifampicin 450 mg, and pyrazinamide 1200 mg. Her visual acuity was 6/60 in her right eye and 1/60 in her left eye. She had sluggish pupils, red-green dyschromatopsia, hyperemic optic discs and central visual field defects. Her intraocular pressure was 14 mmHg. Her liver and kidney functions were essentially normal. Screening for human immunodeficiency virus was not reactive. Her impaired visual function improved following prompt diagnosis and attention, including the discontinuation of medication. Conclusions The ethambutol and isoniazid in antituberculosis medication are notorious for causing impaired visual function. The diagnosis of ocular toxicity from antituberculosis drugs should never be delayed, and should be possible with the patient's history and simple but basic eye examinations and tests. Tight weight-based antituberculosis therapy, routine peri-therapy visual function monitoring towards early detection of impaired function, and prompt attention will reduce avoidable ocular morbidity.</p

    Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence.

    Get PDF
    Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field's current understanding of nicotine's actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. In addition to nicotine's direct actions in the brain, other constituents in nicotine and tobacco products have also been found to alter drug use, and thus, evidence is provided to highlight this issue. Finally, currently available pharmacotherapeutic strategies are discussed, along with an outlook for future therapeutic directions to achieve to the goal of long-term nicotine cessation

    Rapid Enzymatic Response to Compensate UV Radiation in Copepods

    Get PDF
    Ultraviolet radiation (UVR) causes physical damage to DNA, carboxylation of proteins and peroxidation of lipids in copepod crustaceans, ubiquitous and abundant secondary producers in most aquatic ecosystems. Copepod adaptations for long duration exposures include changes in behaviour, changes in pigmentation and ultimately changes in morphology. Adaptations to short-term exposures are little studied. Here we show that short-duration exposure to UVR causes the freshwater calanoid copepod, Eudiaptomus gracilis, to rapidly activate production of enzymes that prevent widespread collateral peroxidation (glutathione S-transferase, GST), that regulate apoptosis cell death (Caspase-3, Casp-3), and that facilitate neurotransmissions (cholinesterase-ChE). None of these enzyme systems is alone sufficient, but they act in concert to reduce the stress level of the organism. The interplay among enzymatic responses provides useful information on how organisms respond to environmental stressors acting on short time scales

    Roles of glial cells in synapse development

    Get PDF
    Brain function relies on communication among neurons via highly specialized contacts, the synapses, and synaptic dysfunction lies at the heart of age-, disease-, and injury-induced defects of the nervous system. For these reasons, the formation—and repair—of synaptic connections is a major focus of neuroscience research. In this review, I summarize recent evidence that synapse development is not a cell-autonomous process and that its distinct phases depend on assistance from the so-called glial cells. The results supporting this view concern synapses in the central nervous system as well as neuromuscular junctions and originate from experimental models ranging from cell cultures to living flies, worms, and mice. Peeking at the future, I will highlight recent technical advances that are likely to revolutionize our views on synapse–glia interactions in the developing, adult and diseased brain

    Key signaling nodes in mammary gland development and cancer: β-catenin

    Get PDF
    β-Catenin plays important roles in mammary development and tumorigenesis through its functions in cell adhesion, signal transduction and regulation of cell-context-specific gene expression. Studies in mice have highlighted the critical role of β-catenin signaling for stem cell biology at multiple stages of mammary development. Deregulated β-catenin signaling disturbs stem and progenitor cell dynamics and induces mammary tumors in mice. Recent data showing deregulated β-catenin signaling in metaplastic and basal-type tumors suggest a similar link to reactivated developmental pathways and human breast cancer. The present review will discuss β-catenin as a central transducer of numerous signaling pathways and its role in mammary development and breast cancer

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: Processed data and code used in the analysis are accessible from the Zenodo Repository: 10.5281/zenodo.6885455Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.Bertarelli FoundationResearch EnglandMoore FoundationPackard FoundationInstituto Politecnico NacionalDarwin InitiativeGeorgia AquariumRolex Awards for EnterpriseWhitley Fund for Natur

    Absence of functional messenger RNA activity for beta globin chain synthesis in beta 0-thalassemia

    Full text link
    Abstract Functional human globin messenger RNA was isolated from reticulocytes of two patients with homozygous beta 0-thalassemia, three patients with sickle cell beta 0-thalassemia, andone patient doubly heterozygous for beta 0-thalassemia and hemoglobin Lepore. When incubated in the Krebs type II mouse ascites tumor-cell-free system, messenger RNA from these patients actively directed the synthesis of human beta s and/or alpha- and gamma-globin chains but failed to stimulate the synthesis of any beta A-chains, even though nonthalassemic human globin mRNA preparations consistently stimulated two to four times as much beta A- or beta S-globin chain synthesis as alpha-chain synthesis when incubated in the same system under the same conditions. These results strongly suggest that functional beta A-chain-specific globin mRNA is absent in beta 0-thalassemia.</jats:p

    Absence of functional messenger RNA activity for beta globin chain synthesis in beta 0-thalassemia

    Full text link
    Functional human globin messenger RNA was isolated from reticulocytes of two patients with homozygous beta 0-thalassemia, three patients with sickle cell beta 0-thalassemia, andone patient doubly heterozygous for beta 0-thalassemia and hemoglobin Lepore. When incubated in the Krebs type II mouse ascites tumor-cell-free system, messenger RNA from these patients actively directed the synthesis of human beta s and/or alpha- and gamma-globin chains but failed to stimulate the synthesis of any beta A-chains, even though nonthalassemic human globin mRNA preparations consistently stimulated two to four times as much beta A- or beta S-globin chain synthesis as alpha-chain synthesis when incubated in the same system under the same conditions. These results strongly suggest that functional beta A-chain-specific globin mRNA is absent in beta 0-thalassemia.</jats:p
    corecore