303 research outputs found

    Integrated Numerical Modelling System for Extreme Wave Events at the Wave Hub Site

    Get PDF
    This paper examines an extreme wave event which occurred during a storm at the Wave Hub site in 2012. The extreme wave of 9.57 m height was identified from a time series of the heave data collected by an Oceanor Seawatch Mini II Buoy deployed at the site. An energy density spectrum was derived from this time series and then used to drive a physical model, which represents the extreme wave at 1:20 scale in Plymouth University’s new COAST Lab. The NewWave technique was used to define the input to the physical model. The experiment is reproduced in a numerical wave tank using the fully nonlinear CFD library OpenFOAM® and the wave generation toolbox waves2Foam. Results are evaluated, and issues regarding the predictions of a numerical model that is driven by the NewWave input signal are discussed. This study sets the basis for further research in coupling field data, physical modelling and numerical modelling in a more efficient and balanced way. This will lead to the new approach of composite modelling that will be implemented in future work

    Combined Inflammatory and Metabolic Defects Reflected by Reduced Serum Protein Levels in Patients with Buruli Ulcer Disease

    Get PDF
    Buruli ulcer is a skin disease caused by Mycobacterium ulcerans that is spreading in tropical countries, with major public health and economic implications in West Africa. Multi-analyte profiling of serum proteins in patients and endemic controls revealed that Buruli ulcer disease down-regulates the circulating levels of a large array of inflammatory mediators, without impacting on the leukocyte composition of peripheral blood. Notably, several proteins contributing to acute phase reaction, lipid metabolism, coagulation and tissue remodelling were also impacted. Their down-regulation was selective and persisted after the elimination of bacteria with antibiotic therapy. It involved proteins with various functions and origins, suggesting that M. ulcerans infection causes global and chronic defects in the host’s protein metabolism. Accordingly, patients had reduced levels of total serum proteins and blood urea, in the absence of signs of malnutrition, or functional failure of liver or kidney. Interestingly, slow healers had deeper metabolic and coagulation defects at the start of antibiotic therapy. In addition to providing novel insight into Buruli ulcer pathogenesis, our study therefore identifies a unique proteomic signature for this disease

    Proteolysis of the endothelial cell protein C receptor by neutrophil proteinase 3

    Get PDF
    BACKGROUND: The endothelial cell protein C receptor (EPCR) presents protein C to the thrombin:thrombomodulin complex on the endothelium of large vessels, and enhances the generation of activated protein C (APC) and activation of protease-activated receptor-1. A previous report has demonstrated binding of soluble (s) EPCR to activated neutrophils via surface proteinase 3 (PR3). METHODS: We now report further characterization of this interaction. Activated neutrophils and purified PR3 both decrease endothelial cell (EC) surface EPCR, suggestive of its proteolysis. RESULTS: When added to purified recombinant sEPCR, PR3 produced multiple cleavages, with early products including 20 kDa N-terminal and C-terminal (after Lys(176)) fragments. The binding of active site blocked PR3 to sEPCR was studied by surface plasmon resonance. Estimates of the K(D) of 18.5–102 nm were obtained with heterogeneous binding, suggestive of more than a single interaction site. CONCLUSIONS: This work demonstrates PR3 binding to and proteolysis of EPCR and suggests a mechanism by which anticoagulant and cell protective pathways can be down-regulated during inflammation

    Comparison of two independent systematic reviews of trials of recombinant human bone morphogenetic protein-2 (rhBMP-2) : The Yale Open Data Access Medtronic Project

    Get PDF
    Background: It is uncertain whether the replication of systematic reviews, particularly those with the same objectives and resources, would employ similar methods and/or arrive at identical findings. We compared the results and conclusions of two concurrent systematic reviews undertaken by two independent research teams provided with the same objectives, resources, and individual participant-level data. Methods: Two centers in the USA and UK were each provided with participant-level data on 17 multi-site clinical trials of recombinant human bone morphogenetic protein-2 (rhBMP-2). The teams were blinded to each other's methods and findings until after publication. We conducted a retrospective structured comparison of the results of the two systematic reviews. The main outcome measures included (1) trial inclusion criteria; (2) statistical methods; (3) summary efficacy and risk estimates; and (4) conclusions. Results: The two research teams' meta-analyses inclusion criteria were broadly similar but differed slightly in trial inclusion and research methodology. They obtained similar results in summary estimates of most clinical outcomes and adverse events. Center A incorporated all trials into summary estimates of efficacy and harms, while Center B concentrated on analyses stratified by surgical approach. Center A found a statistically significant, but small, benefit whereas Center B reported no advantage. In the analysis of harms, neither showed an increased cancer risk at 48 months, although Center B reported a significant increase at 24 months. Conclusions reflected these differences in summary estimates of benefit balanced with small but potentially important risk of harm. Conclusions: Two independent groups given the same research objectives, data, resources, funding, and time produced broad general agreement but differed in several areas. These differences, the importance of which is debatable, indicate the value of the availability of data to allow for more than a single approach and a single interpretation of the data. Systematic review registration: PROSPERO CRD42012002040and CRD42012001907

    Numerical and physical modelling of extreme waves at Wave Hub

    Get PDF
    With a history of international failures, the survivability of coupled systems of wave energy devices and their moorings, particularly those to be installed at development sites like Wave Hub, is surrounded by uncertainty. Potential design solutions require a better understanding of the hydrodynamics and structural loading experienced during extreme events, like rogue wave impact, in order to mitigate the risk of device and mooring failure. Rogue waves are waves with amplitudes far greater than those expected, given the surrounding sea conditions. Intense study into these events stems from their potential for catastrophic impact on ocean engineering structures. However, little is known about their physical origins and, currently, there is no consensus on their definition or explanation of the mechanism which drives them. This paper concerns the numerical modeling and experimental validation of extreme rogue wave examples at the Wave Hub site. Using hindcast data, the 100 year extreme wave at the Wave Hub site is determined. This extreme wave is replicated in Plymouth University’s new COAST Lab using a NewWave, dispersive focusing input. To simulate and analyse these events, we duplicate these conditions in a numerical wave tank (NWT), solving the fully nonlinear Navier-Stokes equations, with a free surface, using the Volume of Fluid (VoF) method and open source CFD library OpenFOAM®. The comparison shows that the CFD software is capable of simulating focused waves similar to those produced in the physical tank but tends to overestimate the crest heights. It is also noted that nonlinear effects are important when considering the shape and location of focused wave events

    A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis

    Get PDF
    BACKGROUND: Cystic fibrosis (CF) is a chronic, life-limiting disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene leading to abnormal airway surface ion transport, chronic lung infections, inflammation and eventual respiratory failure. With the exception of the small-molecule potentiator, ivacaftor (Kalydeco®, Vertex Pharmaceuticals, Boston, MA, USA), which is suitable for a small proportion of patients, there are no licensed therapies targeting the basic defect. The UK Cystic Fibrosis Gene Therapy Consortium has taken a cationic lipid-mediated CFTR gene therapy formulation through preclinical and clinical development. OBJECTIVE: To determine clinical efficacy of the formulation delivered to the airways over a period of 1 year in patients with CF. DESIGN: This was a randomised, double-blind, placebo-controlled Phase IIb trial of the CFTR gene–liposome complex pGM169/GL67A. Randomisation was performed via InForm™ version 4.6 (Phase Forward Incorporated, Oracle, CA, USA) and was 1 : 1, except for patients in the mechanistic subgroups (2 : 1). Allocation was blinded by masking nebuliser chambers. SETTINGS: Data were collected in the clinical and scientific sites and entered onto a trial-specific InForm, version 4.6 database. PARTICIPANTS: Patients with CF aged ≥ 12 years with forced expiratory volume in the first second (FEV1) between 50% and 90% predicted and any combination of CFTR mutations. The per-protocol group (≥ 9 doses) consisted of 54 patients receiving placebo (62 randomised) and 62 patients receiving gene therapy (78 randomised). INTERVENTIONS: Subjects received 5 ml of nebulised pGM169/G67A (active) or 0.9% saline (placebo) at 28 (±5)-day intervals over 1 year. MAIN OUTCOME MEASURES: The primary end point was the relative change in percentage predicted FEV1 over the 12-month period. A number of secondary clinical outcomes were assessed alongside safety measures: other spirometric values; lung clearance index (LCI) assessed by multibreath washout; structural disease on computed tomography (CT) scan; the Cystic Fibrosis Questionnaire – Revised (CFQ-R), a validated quality-of-life questionnaire; exercise capacity and monitoring; systemic and sputum inflammatory markers; and adverse events (AEs). A mechanistic study was performed in a subgroup in whom transgene deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) was measured alongside nasal and lower airway potential difference. RESULTS: There was a significant (p = 0.046) treatment effect (TE) of 3.7% [95% confidence interval (CI) 0.1% to 7.3%] in the primary end point at 12 months and in secondary end points, including forced vital capacity (FVC) (p = 0.031) and CT gas trapping (p = 0.048). Other outcomes, although not reaching statistical significance, favoured active treatment. Effects were noted by 1 month and were irrespective of sex, age or CFTR mutation class. Subjects with a more severe baseline FEV1 had a FEV1 TE of 6.4% (95% CI 0.8% to 12.1%) and greater changes in many other secondary outcomes. However, the more mildly affected group also demonstrated benefits, particularly in small airway disease markers such as LCI. The active group showed a significantly (p = 0.032) greater bronchial chloride secretory response. No difference in treatment-attributable AEs was seen between the placebo and active groups. CONCLUSIONS: Monthly application of the pGM169/GL67A gene therapy formulation was associated with an improvement in lung function, other clinically relevant parameters and bronchial CFTR function, compared with placebo. LIMITATIONS: Although encouraging, the improvement in FEV1 was modest and was not accompanied by detectable improvement in patients’ quality of life. FUTURE WORK: Future work will focus on attempts to increase efficacy by increasing dose or frequency, the coadministration of a CFTR potentiator, or the use of modified viral vectors capable of repeated administration. TRIAL REGISTRATION: ClinicalTrials.gov NCT01621867

    Stretching the spines of gymnasts: a review

    Get PDF
    Gymnastics is noted for involving highly specialized strength, power, agility and flexibility. Flexibility is perhaps the single greatest discriminator of gymnastics from other sports. The extreme ranges of motion achieved by gymnasts require long periods of training, often occupying more than a decade. Gymnasts also start training at an early age (particularly female gymnasts), and the effect of gymnastics training on these young athletes is poorly understood. One of the concerns of many gymnastics professionals is the training of the spine in hyperextension-the ubiquitous 'arch' seen in many gymnastics positions and movements. Training in spine hyperextension usually begins in early childhood through performance of a skill known as a back-bend. Does practising a back-bend and other hyperextension exercises harm young gymnasts? Current information on spine stretching among gymnasts indicates that, within reason, spine stretching does not appear to be an unusual threat to gymnasts' health. However, the paucity of information demands that further study be undertaken
    corecore