4,528 research outputs found
Reversible Fluorination of Graphene: towards a Two-Dimensional Wide Bandgap Semiconductor
We report the synthesis and evidence of graphene fluoride, a two-dimensional
wide bandgap semiconductor derived from graphene. Graphene fluoride exhibits
hexagonal crystalline order and strongly insulating behavior with resistance
exceeding 10 G at room temperature. Electron transport in graphene
fluoride is well described by variable-range hopping in two dimensions due to
the presence of localized states in the band gap. Graphene obtained through the
reduction of graphene fluoride is highly conductive, exhibiting a resistivity
of less than 100 k at room temperature. Our approach provides a new
path to reversibly engineer the band structure and conductivity of graphene for
electronic and optical applications.Comment: 7 pages, 5 figures, revtex, to appear in PR
Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes
Nanolaminated materials are important because of their exceptional properties
and wide range of applications. Here, we demonstrate a general approach to
synthesize a series of Zn-based MAX phases and Cl-terminated MXenes originating
from the replacement reaction between the MAX phase and the late transition
metal halides. The approach is a top-down route that enables the late
transitional element atom (Zn in the present case) to occupy the A site in the
pre-existing MAX phase structure. Using this replacement reaction between Zn
element from molten ZnCl2 and Al element in MAX phase precursors (Ti3AlC2,
Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC
were synthesized. When employing excess ZnCl2, Cl terminated MXenes (such as
Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and
Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate
that A-site element replacement in traditional MAX phases by late transition
metal halides opens the door to explore MAX phases that are not
thermodynamically stable at high temperature and would be difficult to
synthesize through the commonly employed powder metallurgy approach. In
addition, this is the first time that exclusively Cl-terminated MXenes were
obtained, and the etching effect of Lewis acid in molten salts provides a green
and viable route to prepare MXenes through an HF-free chemical approach.Comment: Title changed; experimental section and discussion revise
Electronic structure investigation of Ti3AlC2, Ti3SiC2, and Ti3GeC2 by soft-X-ray emission spectroscopy
The electronic structures of epitaxially grown films of Ti3AlC2, Ti3SiC2 and
Ti3GeC2 have been investigated by bulk-sensitive soft X-ray emission
spectroscopy. The measured high-resolution Ti L, C K, Al L, Si L and Ge M
emission spectra are compared with ab initio density-functional theory
including core-to-valence dipole matrix elements. A qualitative agreement
between experiment and theory is obtained. A weak covalent Ti-Al bond is
manifested by a pronounced shoulder in the Ti L-emission of Ti3AlC2. As Al is
replaced with Si or Ge, the shoulder disappears. For the buried Al and
Si-layers, strongly hybridized spectral shapes are detected in Ti3AlC2 and
Ti3SiC2, respectively. As a result of relaxation of the crystal structure and
the increased charge-transfer from Ti to C, the Ti-C bonding is strengthened.
The differences between the electronic structures are discussed in relation to
the bonding in the nanolaminates and the corresponding change of materials
properties.Comment: 15 pages, 8 figure
Інтеграція знань з астрономії та фізики щодо уявлень про приливи та відливи
(uk) В статті розкриті окремі гравітаційні, енергетичні та екологічні особливості припливів та відливів, які у підручниках для середніх загальноосвітніх навчальних закладів та вищої школи мало висвітлені. Автором якісну картину припливів та відпливів доповнено кількісною.(en) The article revealed specific gravity, energy and environmental features tides and low tides that textbooks for secondary schools and higher education was highlighted. The author of picture quality tides supplemented with quantitative
Slim Epistemology with a Thick Skin
The distinction between ‘thick’ and ‘thin’ value concepts, and its importance to ethical theory, has been an active topic in recent meta-ethics. This paper defends three claims regarding the parallel issue about thick and thin epistemic concepts. (1) Analogy with ethics offers no straightforward way to establish a good, clear distinction between thick and thin epistemic concepts. (2) Assuming there is such a distinction, there are no semantic grounds for assigning thick epistemic concepts priority over the thin. (3) Nor does the structure of substantive epistemological theory establish that thick epistemic concepts enjoy systematic theoretical priority over the thin. In sum, a good case has yet to be made for any radical theoretical turn to thicker epistemology
The Effects of Variables on the Penetration and Pickup of Starch Applied at the Size Press
A literature research is presented concerning the pickup and penetration of starch at the size press. The literature research indicates there is very little quantitative results in this area. The objective of the experimental work is to determine the effect of starch temperature, sheet moisture, and machine speed on the penetration of starch into the sheet. The depth and quantity of penetration was obtained by using a spectrophotometer to determine the concentration of starch in microtomed samples.
The experimental results indicated that increased temperature of starch solutions and increased machine speeds increases penetration. Penetration also increases with increasing moisture content of the paper but only to an optimum moisture content. The effects of penetration and pickup on physical and optical test results are also discussed in the discussion section
Imbibition in Disordered Media
The physics of liquids in porous media gives rise to many interesting
phenomena, including imbibition where a viscous fluid displaces a less viscous
one. Here we discuss the theoretical and experimental progress made in recent
years in this field. The emphasis is on an interfacial description, akin to the
focus of a statistical physics approach. Coarse-grained equations of motion
have been recently presented in the literature. These contain terms that take
into account the pertinent features of imbibition: non-locality and the
quenched noise that arises from the random environment, fluctuations of the
fluid flow and capillary forces. The theoretical progress has highlighted the
presence of intrinsic length-scales that invalidate scale invariance often
assumed to be present in kinetic roughening processes such as that of a
two-phase boundary in liquid penetration. Another important fact is that the
macroscopic fluid flow, the kinetic roughening properties, and the effective
noise in the problem are all coupled. Many possible deviations from simple
scaling behaviour exist, and we outline the experimental evidence. Finally,
prospects for further work, both theoretical and experimental, are discussed.Comment: Review article, to appear in Advances in Physics, 53 pages LaTe
Insulating and Conducting Phases of RbC60
Optical measurements were performed on thin films of RbC,
identified by X-ray diffraction as mostly material. The samples were
subjected to various heat treatments, including quenching and slow cooling from
400K. The dramatic increase in the transmission of the quenched samples, and
the relaxation towards the transmission observed in slow cooled samples
provides direct evidence for the existence of a metastable insulating phase.
Slow cooling results in a phase transition between two electrically conducting
phases.Comment: Minor revisions. Submitted to PRB, RevTeX 3.0 file, 2 postscript
figures included, ir_dop
Nonlinear Measures for Characterizing Rough Surface Morphologies
We develop a new approach to characterizing the morphology of rough surfaces
based on the analysis of the scaling properties of contour loops, i.e. loops of
constant height. Given a height profile of the surface we perform independent
measurements of the fractal dimension of contour loops, and the exponent that
characterizes their size distribution. Scaling formulas are derived and used to
relate these two geometrical exponents to the roughness exponent of a
self-affine surface, thus providing independent measurements of this important
quantity. Furthermore, we define the scale dependent curvature and demonstrate
that by measuring its third moment departures of the height fluctuations from
Gaussian behavior can be ascertained. These nonlinear measures are used to
characterize the morphology of computer generated Gaussian rough surfaces,
surfaces obtained in numerical simulations of a simple growth model, and
surfaces observed by scanning-tunneling-microscopes. For experimentally
realized surfaces the self-affine scaling is cut off by a correlation length,
and we generalize our theory of contour loops to take this into account.Comment: 39 pages and 18 figures included; comments to
[email protected]
Phonons and related properties of extended systems from density-functional perturbation theory
This article reviews the current status of lattice-dynamical calculations in
crystals, using density-functional perturbation theory, with emphasis on the
plane-wave pseudo-potential method. Several specialized topics are treated,
including the implementation for metals, the calculation of the response to
macroscopic electric fields and their relevance to long wave-length vibrations
in polar materials, the response to strain deformations, and higher-order
responses. The success of this methodology is demonstrated with a number of
applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic
- …
