270 research outputs found
The International College of Neuro-Psychopharmacology (CINP) treatment guidelines for Bipolar disorder in adults (CINP-BD-2017), part 2:Review, grading of the evidence and a precise algorithm
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
A Novel Statistic for Genome-Wide Interaction Analysis
Although great progress in genome-wide association studies (GWAS) has been made,
the significant SNP associations identified by GWAS account for only a few
percent of the genetic variance, leading many to question where and how we can
find the missing heritability. There is increasing interest in genome-wide
interaction analysis as a possible source of finding heritability unexplained by
current GWAS. However, the existing statistics for testing interaction have low
power for genome-wide interaction analysis. To meet challenges raised by
genome-wide interactional analysis, we have developed a novel statistic for
testing interaction between two loci (either linked or unlinked). The null
distribution and the type I error rates of the new statistic for testing
interaction are validated using simulations. Extensive power studies show that
the developed statistic has much higher power to detect interaction than
classical logistic regression. The results identified 44 and 211 pairs of SNPs
showing significant evidence of interactions with FDR<0.001 and
0.001<FDR<0.003, respectively, which were seen in two independent studies
of psoriasis. These included five interacting pairs of SNPs in genes LST1/NCR3,
CXCR5/BCL9L, and GLS2, some of which were located in the target sites of
miR-324-3p, miR-433, and miR-382, as well as 15 pairs of interacting SNPs that
had nonsynonymous substitutions. Our results demonstrated that genome-wide
interaction analysis is a valuable tool for finding remaining missing
heritability unexplained by the current GWAS, and the developed novel statistic
is able to search significant interaction between SNPs across the genome. Real
data analysis showed that the results of genome-wide interaction analysis can be
replicated in two independent studies
Tissue Effect on Genetic Control of Transcript Isoform Variation
Current genome-wide association studies (GWAS) are moving towards the use of large cohorts of primary cell lines to study a disease of interest and to assign biological relevance to the genetic signals identified. Here, we use a panel of human osteoblasts (HObs) to carry out a transcriptomic survey, similar to recent studies in lymphoblastoid cell lines (LCLs). The distinct nature of HObs and LCLs is reflected by the preferential grouping of cell type–specific genes within biologically and functionally relevant pathways unique to each tissue type. We performed cis-association analysis with SNP genotypes to identify genetic variations of transcript isoforms, and our analysis indicates that differential expression of transcript isoforms in HObs is also partly controlled by cis-regulatory genetic variants. These isoforms are regulated by genetic variants in both a tissue-specific and tissue-independent fashion, and these associations have been confirmed by RT–PCR validation. Our study suggests that multiple transcript isoforms are often present in both tissues and that genetic control may affect the relative expression of one isoform to another, rather than having an all-or-none effect. Examination of the top SNPs from a GWAS of bone mineral density show overlap with probeset associations observed in this study. The top hit corresponding to the FAM118A gene was tested for association studies in two additional clinical studies, revealing a novel transcript isoform variant. Our approach to examining transcriptome variation in multiple tissue types is useful for detecting the proportion of genetic variation common to different cell types and for the identification of cell-specific isoform variants that may be functionally relevant, an important follow-up step for GWAS
Determination of Beta-Defensin Genomic Copy Number in Different Populations: A Comparison of Three Methods
There have been conflicting reports in the literature on association of gene copy number with disease, including CCL3L1 and HIV susceptibility, and β-defensins and Crohn's disease. Quantification of precise gene copy numbers is important in order to define any association of gene copy number with disease. At present, real-time quantitative PCR (QPCR) is the most commonly used method to determine gene copy number, however the Paralogue Ratio Test (PRT) is being used in more and more laboratories.In this study we compare a Pyrosequencing-based Paralogue Ratio Test (PPRT) for determining beta-defensin gene copy number with two currently used methods for gene copy number determination, QPCR and triplex PRT by typing five different cohorts (UK, Danish, Portuguese, Ghanaian and Czech) of DNA from a total of 576 healthy individuals. We found a systematic measurement bias between DNA cohorts revealed by QPCR, but not by the PRT-based methods. Using PRT, copy number ranged from 2 to 9 copies, with a modal copy number of 4 in all populations.QPCR is very sensitive to quality of the template DNA, generating systematic biases that could produce false-positive or negative disease associations. Both triplex PRT and PPRT do not show this systematic bias, and type copy number within the correct range, although triplex PRT appears to be a more precise and accurate method to type beta-defensin copy number
Does General Parenting Context Modify Adolescents' Appraisals and Coping with a Situation of Parental Regulation? The Case of Autonomy-Supportive Parenting
Theory and research suggest that adolescents differ in their appraisals and coping reactions in response to parental regulation. Less is known, however, about factors that determine these differences in adolescents’ responses. In this study, we examined whether adolescents' appraisals and coping reactions depend upon parents’ situation-specific autonomy-supportive or controlling communication style (i.e., the situation) in interaction with adolescents’ past experiences with general autonomy-supportive parenting (i.e., the parenting context). Whereas in Study 1 (N = 176) adolescents’ perceived general autonomy-supportive parenting context was assessed at one point in time, in Study 2 (N = 126) it was assessed multiple times across a 6-year period, allowing for an estimation of trajectories of perceived autonomy-supportive parenting context. In each study, adolescents read a vignette-based scenario depicting a situation of maternal regulation (i.e., a request to study more), which was communicated in either an autonomy-supportive or a controlling way. Following this scenario, they reported upon their appraisals and their anticipated coping reactions. Results of each study indicated that both the autonomy-supportive (relative to the controlling) situation and the perceived autonomy-supportive parenting context generally related to more positive appraisals (i.e., more autonomy need satisfaction, less autonomy need frustration), as well as to more constructive coping responses (i.e., less oppositional defiance and submission, more negotiation and accommodation). In addition, situation × context interactions were found, whereby adolescents growing up in a more autonomy-supportive context seemed to derive greater benefits from the exposure to an autonomy-supportive situation and reacted more constructively to a controlling situation
Genomic copy number variation in Mus musculus.
BACKGROUND: Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.
RESULTS: We found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).
CONCLUSION: The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies
A common biological basis of obesity and nicotine addiction
Smoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved in the control of the intake of both food and tobacco. We evaluated the effect of single-nucleotide polymorphisms (SNPs) affecting body mass index (BMI) on smoking behavior, and tested the 32 SNPs identified in a meta-analysis for association with two smoking phenotypes, smoking initiation (SI) and the number of cigarettes smoked per day (CPD) in an Icelandic sample (N=34 216 smokers). Combined according to their effect on BMI, the SNPs correlate with both SI (r=0.019, P=0.00054) and CPD (r=0.032, P=8.0 × 10<sup>−7</sup>). These findings replicate in a second large data set (N=127 274, thereof 76 242 smokers) for both SI (P=1.2 × 10<sup>−5</sup>) and CPD (P=9.3 × 10<sup>−5</sup>). Notably, the variant most strongly associated with BMI (rs1558902-A in FTO) did not associate with smoking behavior. The association with smoking behavior is not due to the effect of the SNPs on BMI. Our results strongly point to a common biological basis of the regulation of our appetite for tobacco and food, and thus the vulnerability to nicotine addiction and obesity
Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits.
Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease
Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes
Type 1 diabetes (T1D) is a common autoimmune disorder that arises from the action of multiple genetic and environmental risk factors. We report the findings of a genome-wide association study of T1D, combined in a meta-analysis with two previously published studies. The total sample set included 7,514 cases and 9,045 reference samples. Forty-one distinct genomic locations provided evidence for association with T1D in the meta-analysis (P 10 6). After excluding previously reported associations, we further tested 27 regions in an independent set of 4,267 cases, 4,463 controls and 2,319 affected sib-pair (ASP) families. Of these, 18 regions were replicated (P 0.01; overall P 5 × 10 8) and 4 additional regions provided nominal evidence of replication (P 0.05). The many new candidate genes suggested by these results include IL10, IL19, IL20, GLIS3, CD69 and IL27
- …
