12,777 research outputs found
Interactions of large amplitude solitary waves in viscous fluid conduits
The free interface separating an exterior, viscous fluid from an intrusive
conduit of buoyant, less viscous fluid is known to support strongly nonlinear
solitary waves due to a balance between viscosity-induced dispersion and
buoyancy-induced nonlinearity. The overtaking, pairwise interaction of weakly
nonlinear solitary waves has been classified theoretically for the Korteweg-de
Vries equation and experimentally in the context of shallow water waves, but a
theoretical and experimental classification of strongly nonlinear solitary wave
interactions is lacking. The interactions of large amplitude solitary waves in
viscous fluid conduits, a model physical system for the study of
one-dimensional, truly dissipationless, dispersive nonlinear waves, are
classified. Using a combined numerical and experimental approach, three classes
of nonlinear interaction behavior are identified: purely bimodal, purely
unimodal, and a mixed type. The magnitude of the dispersive radiation due to
solitary wave interactions is quantified numerically and observed to be beyond
the sensitivity of our experiments, suggesting that conduit solitary waves
behave as "physical solitons." Experimental data are shown to be in excellent
agreement with numerical simulations of the reduced model. Experimental movies
are available with the online version of the paper.Comment: 13 pages, 4 figure
Conflict and social vulnerability to climate change: Lessons from Gaza
In societies marred by conflict, the propensity of populations to be harmed by climate hazards is likely to be increased by their exposure to violence and other coercive practices. Stakeholder assessments of climate vulnerability, as reported here for the Gaza Strip, can capture the qualitative experience of harm caused by conflict-related practices as these relate to, and interact with, forecasted climatic risks. The key pathways of climate vulnerability identified by stakeholders in Gaza relate above all to expected impacts on food security and water security. Exploration of these vulnerability pathways reveals conflict-structured non-climatic risks overwhelming forecasted climate risks. The prevalence in Gaza of short-term 'enforced coping' prevents the development of long-term adaptive capacity. Climate vulnerability assessments in (post)conflict environments should acknowledge the methodological and political-policy challenges caused by chronic, non-climatic sources of harm. © 2011 Taylor & Francis
Generalized Parity-Time Symmetry Condition for Enhanced Sensor Telemetry
Wireless sensors based on micro-machined tunable resonators are important in
a variety of applications, ranging from medical diagnosis to industrial and
environmental monitoring.The sensitivity of these devices is, however, often
limited by their low quality (Q) factor.Here, we introduce the concept of
isospectral party time reciprocal scaling (PTX) symmetry and show that it can
be used to build a new family of radiofrequency wireless microsensors
exhibiting ultrasensitive responses and ultrahigh resolution, which are well
beyond the limitations of conventional passive sensors. We show theoretically,
and demonstrate experimentally using microelectromechanical based wireless
pressure sensors, that PTXsymmetric electronic systems share the same
eigenfrequencies as their parity time (PT)-symmetric counterparts, but
crucially have different circuit profiles and eigenmodes. This simplifies the
electronic circuit design and enables further enhancements to the extrinsic Q
factor of the sensors
Nonlinear Schrödinger equations and the universal description of dispersive shock wave structure
The nonlinear Schrödinger (NLS) equation and the Whitham modulation equations both describe slowly varying, locally periodic nonlinear wavetrains, albeit in differing amplitude-frequency domains. In this paper, we take advantage of the overlapping asymptotic regime that applies to both the NLS and Whitham modulation descriptions in order to develop a universal analytical description of dispersive shock waves (DSWs) generated in Riemann problems for a broad class of integrable and non-integrable nonlinear dispersive equations. The proposed method extends DSW fitting theory that prescribes the motion of a DSW's edges into the DSW's interior, i.e., this work reveals the DSW structure. Our approach also provides a natural framework in which to analyze DSW stability. We consider several representative, physically relevant examples that illustrate the efficacy of the developed general theory. Comparisons with direct numerical simulations show that inclusion of higher order terms in the NLS equation enables a remarkably accurate description of the DSW structure in a broad region that extends from the harmonic, small amplitude edge
Solitonic dispersive hydrodynamics: theory and observation
Ubiquitous nonlinear waves in dispersive media include localized solitons and
extended hydrodynamic states such as dispersive shock waves. Despite their
physical prominence and the development of thorough theoretical and
experimental investigations of each separately, experiments and a unified
theory of solitons and dispersive hydrodynamics are lacking. Here, a general
soliton-mean field theory is introduced and used to describe the propagation of
solitons in macroscopic hydrodynamic flows. Two universal adiabatic invariants
of motion are identified that predict trapping or transmission of solitons by
hydrodynamic states. The result of solitons incident upon smooth expansion
waves or compressive, rapidly oscillating dispersive shock waves is the same,
an effect termed hydrodynamic reciprocity. Experiments on viscous fluid
conduits quantitatively confirm the soliton-mean field theory with broader
implications for nonlinear optics, superfluids, geophysical fluids, and other
dispersive hydrodynamic media.Comment: 8 pages, 5 figure
The Calibration of Stock Option Pricing Models Using Inverse Problem Methodology
We analyse the procedure for determining volatility presented by Lagnado and Osher, and explain in some detail where the scheme comes from. We present an alternative scheme which avoids some of the technical complications arising in Lagnado and Osher's approach. An algorithm for solving the resulting equations is given, along with a selection of numerical examples.
Recommended from our members
Functional Cellular Anti-Tumor Mechanisms are Augmented by Genetic Proteoglycan Targeting.
While recent research points to the importance of glycans in cancer immunity, knowledge on functional mechanisms is lacking. In lung carcinoma among other tumors, anti-tumor immunity is suppressed; and while some recent therapies boost T-cell mediated immunity by targeting immune-checkpoint pathways, robust responses are uncommon. Augmenting tumor antigen-specific immune responses by endogenous dendritic cells (DCs) is appealing from a specificity standpoint, but challenging. Here, we show that restricting a heparan sulfate (HS) loss-of-function mutation in the HS sulfating enzyme Ndst1 to predominantly conventional DCs (Ndst1f/f CD11cCre+ mutation) results in marked inhibition of Lewis lung carcinoma growth along with increased tumor-associated CD8+ T cells. In mice deficient in a major DC HS proteoglycan (syndecan-4), splenic CD8+ T cells showed increased anti-tumor cytotoxic responses relative to controls. Studies examining Ndst1f/f CD11cCre + mutants revealed that mutation was associated with an increase in anti-tumor cytolysis using either splenic CD8+ T cells or tumor-infiltrating (TIL) CD8+ T cells purified ex-vivo, and tested in pooled effector-to-target cytolytic assays against tumor cells from respective animals. On glycan compositional analysis, HS purified from Ndst1f/f CD11cCre + mutant DCs had reduced overall sulfation, including reduced sulfation of a tri-sulfated disaccharide species that was intriguingly abundant on wildtype DC HS. Interestingly, antigen presentation in the context of major histocompatibility complex class-I (MHC-I) was enhanced in mutant DCs, with more striking effects in the setting of HS under-sulfation, pointing to a likely regulatory role by sulfated glycans at the antigen/MHC-I - T-cell interface; and possibly future opportunities to improve antigen-specific T cell responses by immunologic targeting of HS proteoglycans in cancer
- …
