16,279 research outputs found

    Photon orbital angular momentum and torque metrics for single telescopes and interferometers

    Full text link
    Context. Photon orbital angular momentum (POAM) is normally invoked in a quantum mechanical context. It can, however, also be adapted to the classical regime, which includes observational astronomy. Aims. I explain why POAM quantities are excellent metrics for describing the end-to-end behavior of astronomical systems. To demonstrate their utility, I calculate POAM probabilities and torques from holography measurements of EVLA antenna surfaces. Methods. With previously defined concepts and calculi, I present generic expressions for POAM spectra, total POAM, torque spectra, and total torque in the image plane. I extend these functional forms to describe the specific POAM behavior of single telescopes and interferometers. Results. POAM probabilities of spatially uncorrelated astronomical sources are symmetric in quantum number. Such objects have zero intrinsic total POAM on the celestial sphere, which means that the total POAM in the image plane is identical to the total torque induced by aberrations within propagation media & instrumentation. The total torque can be divided into source- independent and dependent components, and the latter can be written in terms of three illustrative forms. For interferometers, complications arise from discrete sampling of synthesized apertures, but they can be overcome. POAM also manifests itself in the apodization of each telescope in an array. Holography of EVLA antennas observing a point source indicate that ~ 10% of photons in the n = 0 state are torqued to n != 0 states. Conclusions. POAM quantities represent excellent metrics for characterizing instruments because they are used to simultaneously describe amplitude and phase aberrations. In contrast, Zernike polynomials are just solutions of a differential equation that happen to ~ correspond to specific types of aberrations and are typically employed to fit only phases

    S-matrix bootstrap for resonances

    Full text link
    We study the 222\rightarrow2 SS-matrix element of a generic, gapped and Lorentz invariant QFT in d=1+1d=1+1 space time dimensions. We derive an analytical bound on the coupling of the asymptotic states to unstable particles (a.k.a. resonances) and its physical implications. This is achieved by exploiting the connection between the S-matrix phase-shift and the roots of the S-matrix in the physical sheet. We also develop a numerical framework to recover the analytical bound as a solution to a numerical optimization problem. This later approach can be generalized to d=3+1d=3+1 spacetime dimensions.Comment: Minor typos corrected, matches published versio

    Local status and power in area-based health improvement partnerships

    Get PDF
    This is the authors' PDF version of an article published in Health© 2014. The definitive version is available at http://hea.sagepub.comArea-based initiatives (ABIs) have formed an important part of public policy towards more socio-economically deprived areas in many countries. Co-ordinating service provision within and across sectors has been a common feature of these initiatives. Despite sustained policy interest in ABIs, little empirical work has explored relations between ABI providers and partnership development within this context remains under-theorised. This paper addresses both of these gaps by exploring partnerships as a social and developmental process, drawing on concepts from figurational sociology to explain how provider relations develop within an ABI. Qualitative methods were used to explore, prospectively, the development of an ABI targeted at a town in the north west of England. A central finding was that, although effective delivery of ABIs is premised on a high level of coordination between service providers, the pattern of interdependencies between providers limits the frequency and effectiveness of cooperation. In particular, the interdependency of ABI providers with others in their organisation (what is termed here ‘organisational pull’) constrained the ways in which they worked with providers outside of their own organisations. ‘Local’ status, which could be earned over time, enabled some providers to exert greater control over the way in which provider relations developed during the course of the initiative. These findings demonstrate how historically constituted social networks, within which all providers are embedded, shape partnership development. The theoretical insight developed here suggests a need for more realistic expectations among policy makers about how and to what extent provider partnerships can be managed. Keywords: partnership, collaboration, community services, area-based initiatives, organisational pull, figurational sociologyNational Health Service (NHS

    On cubes of Frobenius extensions

    No full text

    Canonical density matrix perturbation theory

    Full text link
    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free energy ensembles in tight-binding, Hartree-Fock or Kohn-Sham density functional theory. The canonical density matrix perturbation theory can be used to calculate temperature dependent response properties from the coupled perturbed self-consistent field equations as in density functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large non-metallic materials and metals at high temperatures.Comment: 21 pages, 3 figure

    High velocity clouds in nearby disk galaxies

    Get PDF
    Clouds of neutral hydrogen in our galaxy with the absolute value of v greater than 100 km/s cover approximately 10 percent of the sky to a limiting column density of 1 x 10(exp 18) cm(exp -2). These high velocity clouds (HVCs) may dominate the kinetic energy of neutral hydrogen in non-circular motion, and are an important though poorly understood component of galactic gas. It has been suggested that the HVCs can be reproduced by a combination of three phenomena: a galactic fountain driven by disk supernovae which would account for most of the HVCs, material tidally torn from the Magellanic Clouds, and an outer arm complex which is associated with the large scale structure of the warped galactic disk. We sought to detect HVCs in external galaxies in order to test the galactic fountain model

    The Progenitors of Recent Core-Collapse Supernovae

    Get PDF
    We present the results of our analysis of Hubble Space Telescope (HST) and deep ground-based images to isolate the massive progenitor stars of the two recent core-collapse supernovae 2008 bk and 2008 cn. The identification of the progenitors is facilitated in one of these two cases by high-precision astrometry based on our HST imaging of SNe at late times
    corecore