3,450 research outputs found
Spinor-Vector Duality in Heterotic String Orbifolds
The three generation heterotic-string models in the free fermionic
formulation are among the most realistic string vacua constructed to date,
which motivated their detailed investigation. The classification of free
fermion heterotic string vacua has revealed a duality under the exchange of
spinor and vector representations of the SO(10) GUT symmetry over the space of
models. We demonstrate the existence of the spinor-vector duality using
orbifold techniques, and elaborate on the relation of these vacua to free
fermionic models.Comment: 20 pages. v2 minor corrections. Version to appear on JHEP. v3
misprints correcte
Some remarks on a new exotic spacetime for time travel by free fall
This work is essentially a review of a new spacetime model with closed causal
curves, recently presented in another paper (Class. Quantum Grav.
\textbf{35}(16) (2018), 165003). The spacetime at issue is topologically
trivial, free of curvature singularities, and even time and space orientable.
Besides summarizing previous results on causal geodesics, tidal accelerations
and violations of the energy conditions, here redshift/blueshift effects and
the Hawking-Ellis classification of the stress-energy tensor are examined.Comment: 17 pages, 9 figures. Submitted as a contribution to the proceedings
of "DOMOSCHOOL - International Alpine School of Mathematics and Physics,
Domodossola 2018". Possible text overlaps with my previous work
arXiv:1803.08214, of which this is essentially a review. Additional results
concerning redshift/blueshift effects and the classification of the
stress-energy tensor are presented her
Holographic metastability
We show how supersymmetric QCD in a slice of AdS can naturally acquire
metastable vacua. The formulation closely follows that of Intriligator, Seiberg
and Shih (ISS), with an "electric" sector on the UV brane and a "magnetic"
sector on the IR brane. However the 't Hooft anomaly matching that constrains
the Seiberg duality central to ISS is replaced by anomaly inflow and
cancellation, and the source of strong coupling is the CFT to which the theory
couples rather than the gauge groups. The theory contains an anomaly free
R-symmetry that, when broken by UV effects, leads to an O'Raifeartaigh model on
the IR brane. In contrast to ISS, the R-symmetry breaking in the UV can be
maximal, and yet the R-symmetry breaking in the IR theory remains under strict
control: there is no need for retrofitting of small parameters.Comment: 20 pages, 2 figure
Condensate cosmology in O'Raifeartaigh models
Flat directions charged under an R-symmetry are a generic feature of
O'Raifeartaigh models. Non-topological solitons associated with this symmetry,
R-balls, are likely to form through the fragmentation of a condensate, itself
created by soft terms induced during inflation. In gravity mediated SUSY
breaking R-balls decay to gravitinos, reheating the universe. For gauge
mediation R-balls can provide a good dark matter candidate. Alternatively they
can decay, either reheating or cooling the universe. Conserved R-symmetry
permits decay to gravitinos or gauginos, whereas spontaneously broken
R-symmetry results in decay to visible sector gauge bosons.Comment: 29 pages, 5 figures. Comments and references added, accepted for
publication in JHE
The mu problem and sneutrino inflation
We consider sneutrino inflation and post-inflation cosmology in the singlet
extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that
supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is
broken by the intermediate-scale VEVs of two flaton fields, which are
determined by the interplay between radiative flaton soft masses and higher
order terms. Then, from the flaton VEVs, we obtain the correct mu term and the
right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH
sneutrino with non-minimal gravity coupling drives inflation, thanks to the
same flaton coupling giving rise to the RH neutrino mass. After inflation,
extra vector-like states, that are responsible for the radiative breaking of
the PQ symmetry, results in thermal inflation with the flaton field, solving
the gravitino problem caused by high reheating temperature. Our model predicts
the spectral index to be n_s\simeq 0.96 due to the additional efoldings from
thermal inflation. We show that a right dark matter abundance comes from the
gravitino of 100 keV mass and a successful baryogenesis is possible via
Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE
Tylosis with oesophageal cancer: Diagnosis, management and molecular mechanisms
Research on iRHOM2 in the Kelsell group is funded by an MRC project grant,
a MRC Clinical Fellowship (to TM) and a Cancer Research UK program grant
Inclusive double-quarkonium production at the Large Hadron Collider
Based on the nonrelativistic QCD (NRQCD) factorization formalism, we
investigate inclusive productions of two spin-triplet S-wave quarkonia
pp->2J/psi+X, 2Upsilon+X, and J/psi+Upsilon+X at the CERN Large Hadron
Collider. The total production rates integrated over the rapidity (y) and
transverse-momentum (p_T) ranges |y|<2.4 and p_T<50 GGeV are predicted to be
sigma[pp->2J/psi+X] = 22 (35) nb, sigma[pp->2Upsilon+X] = 24 (49) pb, and
sigma[pp->J/psi+Upsilon+X] = 7 (13) pb at the center-of-momentum energy sqrt{s}
= 7 (14) TeV. In order to provide predictions that can be useful in both small-
and large-p_T regions, we do not employ the fragmentation approximation and we
include the spin-triplet S-wave color-singlet and color-octet channels for each
quarkonium final state at leading order in the strong coupling. The p_T
distributions of pp->2J/psi+X and 2Upsilon+X in the low-p_T region are
dominated by the color-singlet contributions. At leading order in the strong
coupling, the color-singlet channel is absent for pp->J/psi+Upsilon+X.
Therefore, the process pp->J/psi+Upsilon+X may provide a useful probe to the
color-octet mechanism of NRQCD.Comment: 26 pages, 7 figures, 3 tables, version published in JHE
Revisiting superparticle spectra in superconformal flavor models
We study superparticle spectra in the superconformal flavor scenario with
non-universal gaugino masses. The non-universality of gaugino masses can lead
to the wino-like or higgsino-like neutralino LSP. Furthermore, it is shown that
the parameter space for the higgsino-like LSP includes the region where the
fine-tuning problem can be improved. The degeneracy of soft scalar masses
squared does not drastically change by taking ratios of gaugino masses of order
one. The degeneracy of scalar masses for squarks and left-handed sleptons would
be good to avoid the FCNC problem but that of right-handed slepton masses is
weak. However, the overall size of right-handed slepton masses become larger
when the bino becomes heavier. It is also pointed out that such region can be
realized, and thus, that would be favorable to avoid the FCNC problem for soft
scalar masses as well as A-terms.Comment: 18 pages, 12 figures, reference added, minor correction
A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms
The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the
simplest and most widely-studied supersymmetric extensions to the standard
model of particle physics. Nevertheless, current data do not sufficiently
constrain the model parameters in a way completely independent of priors,
statistical measures and scanning techniques. We present a new technique for
scanning supersymmetric parameter spaces, optimised for frequentist profile
likelihood analyses and based on Genetic Algorithms. We apply this technique to
the CMSSM, taking into account existing collider and cosmological data in our
global fit. We compare our method to the MultiNest algorithm, an efficient
Bayesian technique, paying particular attention to the best-fit points and
implications for particle masses at the LHC and dark matter searches. Our
global best-fit point lies in the focus point region. We find many
high-likelihood points in both the stau co-annihilation and focus point
regions, including a previously neglected section of the co-annihilation region
at large m_0. We show that there are many high-likelihood points in the CMSSM
parameter space commonly missed by existing scanning techniques, especially at
high masses. This has a significant influence on the derived confidence regions
for parameters and observables, and can dramatically change the entire
statistical inference of such scans.Comment: 47 pages, 8 figures; Fig. 8, Table 7 and more discussions added to
Sec. 3.4.2 in response to referee's comments; accepted for publication in
JHE
Identification of chemokine receptors as potential modulators of endocrine resistance in oestrogen receptor–positive breast cancers
Introduction
Endocrine therapies target oestrogenic stimulation of breast cancer (BC) growth, but resistance remains problematic. Our aims in this study were (1) to identify genes most strongly associated with resistance to endocrine therapy by intersecting global gene transcription data from patients treated presurgically with the aromatase inhibitor anastrazole with those from MCF7 cells adapted to long-term oestrogen deprivation (LTED) (2) to assess the clinical value of selected genes in public clinical data sets and (3) to determine the impact of targeting these genes with novel agents.
Methods
Gene expression and Ki67 data were available from 69 postmenopausal women with oestrogen receptor–positive (ER+) early BC, at baseline and 2 weeks after anastrazole treatment, and from cell lines adapted to LTED. The functional consequences of target genes on proliferation, ER-mediated transcription and downstream cell signalling were assessed.
Results
By intersecting genes predictive of a poor change in Ki67 with those upregulated in LTED cells, we identified 32 genes strongly correlated with poor antiproliferative response that were associated with inflammation and/or immunity. In a panel of LTED cell lines, C-X-C chemokine receptor type 7 (CXCR7) and CXCR4 were upregulated compared to their wild types (wt), and CXCR7, but not CXCR4, was associated with reduced relapse-free survival in patients with ER+ BC. The CXCR4 small interfering RNA variant (siCXCR4) had no specific effect on the proliferation of wt-SUM44, wt-MCF7 and their LTED derivatives. In contrast, siCXCR7, as well as CCX733, a CXCR7 antagonist, specifically suppressed the proliferation of MCF7-LTED cells. siCXCR7 suppressed proteins associated with G1/S transition and inhibited ER transactivation in MCF7-LTED, but not wt-MCF7, by impeding association between ER and proline-, glutamic acid– and leucine-rich protein 1, an ER coactivator.
Conclusions
These data highlight CXCR7 as a potential therapeutic target warranting clinical investigation in endocrine-resistant BC
- …
