1,378 research outputs found
Exponential-Potential Scalar Field Universes I: The Bianchi I Models
We obtain a general exact solution of the Einstein field equations for the
anisotropic Bianchi type I universes filled with an exponential-potential
scalar field and study their dynamics. It is shown, in agreement with previous
studies, that for a wide range of initial conditions the late-time behaviour of
the models is that of a power-law inflating FRW universe. This property, does
not hold, in contrast, when some degree of inhomogeneity is introduced, as
discussed in our following paper II.Comment: 16 pages, Plain LaTeX, 1 Figure to be sent on request, to appear in
Phys. Rev.
Physics in the Real Universe: Time and Spacetime
The Block Universe idea, representing spacetime as a fixed whole, suggests
the flow of time is an illusion: the entire universe just is, with no special
meaning attached to the present time. This view is however based on
time-reversible microphysical laws and does not represent macro-physical
behaviour and the development of emergent complex systems, including life,
which do indeed exist in the real universe. When these are taken into account,
the unchanging block universe view of spacetime is best replaced by an evolving
block universe which extends as time evolves, with the potential of the future
continually becoming the certainty of the past. However this time evolution is
not related to any preferred surfaces in spacetime; rather it is associated
with the evolution of proper time along families of world linesComment: 28 pages, including 9 Figures. Major revision in response to referee
comment
Coulomb Phase Gluon Scattering at Strong Coupling
We calculate corrections to gluon scattering amplitudes in a Coulomb phase
using gauge/string duality. The Coulomb phase considered is a maximal rank
breaking of . This problem
therefore has 3 scales involved: 1) the scale of the massive fields
arising from the spontaneous breaking of the gauge group; 2) The scale of the
scattering, characterized by the Mandelstam variables ; 3) The IR
regulator . We find corrections in the hard scattering limit , and also find below threshold corrections
with . We find that the corrections in the second case
are finite, and so are IR regulator independent.Comment: 17+17 pages, 3 figure
Background Dependent Lorentz Violation: Natural Solutions to the Theoretical Challenges of the OPERA Experiment
To explain both the OPERA experiment and all the known phenomenological
constraints/observations on Lorentz violation, the Background Dependent Lorentz
Violation (BDLV) has been proposed. We study the BDLV in a model independent
way, and conjecture that there may exist a "Dream Special Relativity Theory",
where all the Standard Model (SM) particles can be subluminal due to the
background effects. Assuming that the Lorentz violation on the Earth is much
larger than those on the interstellar scale, we automatically escape all the
astrophysical constraints on Lorentz violation. For the BDLV from the effective
field theory, we present a simple model and discuss the possible solutions to
the theoretical challenges of the OPERA experiment such as the Bremsstrahlung
effects for muon neutrinos and the pion decays. Also, we address the Lorentz
violation constraints from the LEP and KamLAMD experiments. For the BDLV from
the Type IIB string theory with D3-branes and D7-branes, we point out that the
D3-branes are flavour blind, and all the SM particles are the conventional
particles as in the traditional SM when they do not interact with the
D3-branes. Thus, we not only can naturally avoid all the known phenomenological
constraints on Lorentz violation, but also can naturally explain all the
theoretical challenges. Interestingly, the energy dependent photon velocities
may be tested at the experiments.Comment: RevTex4, 14 pages, minor corrections, references adde
Observational Cosmology in Macroscopic Gravity
We discuss the construction of cosmological models within the framework of
Macroscopic Gravity (MG), which is a theory that models the effects of
averaging the geometry of space-time on large scales. We find new exact
spatially homogeneous and isotropic FLRW solutions to the MG field equations,
and investigate large-scale perturbations around them. We find that any
inhomogeneous perturbations to the averaged geometry are severely restricted,
but that possible anisotropies in the correlation tensor can have dramatic
consequences for the measurement of distances. These calculations are a first
step within the MG approach toward developing averaged cosmological models to a
point where they can be used to interpret real cosmological data, and hence to
provide a working alternative to the "concordance" LCDM model.Comment: 22 page
Lovelock inflation and the number of large dimensions
We discuss an inflationary scenario based on Lovelock terms. These higher
order curvature terms can lead to inflation when there are more than three
spatial dimensions. Inflation will end if the extra dimensions are stabilised,
so that at most three dimensions are free to expand. This relates graceful exit
to the number of large dimensions.Comment: 16 pages, 1 figure. v2: published version, added clarification
Study of the dependence of 198Au half-life on source geometry
We report the results of an experiment to determine whether the half-life of
\Au{198} depends on the shape of the source. This study was motivated by recent
suggestions that nuclear decay rates may be affected by solar activity, perhaps
arising from solar neutrinos. If this were the case then the -decay
rates, or half-lives, of a thin foil sample and a spherical sample of gold of
the same mass and activity could be different. We find for \Au{198},
, where
is the mean half-life. The maximum neutrino flux at the sample in our
experiments was several times greater than the flux of solar neutrinos at the
surface of the Earth. We show that this increase in flux leads to a significant
improvement in the limits that can be inferred on a possible solar contribution
to nuclear decays.Comment: 5 pages, 1 figur
On the Meaning of the Principle of General Covariance
We present a definite formulation of the Principle of General Covariance
(GCP) as a Principle of General Relativity with physical content and thus
susceptible of verification or contradiction. To that end it is useful to
introduce a kind of coordinates, that we call quasi-Minkowskian coordinates
(QMC), as an empirical extension of the Minkowskian coordinates employed by the
inertial observers in flat space-time to general observers in the curved
situations in presence of gravitation. The QMC are operationally defined by
some of the operational protocols through which the inertial observers
determine their Minkowskian coordinates and may be mathematically characterized
in a neighbourhood of the world-line of the corresponding observer. It is taken
care of the fact that the set of all the operational protocols which are
equivalent to measure a quantity in flat space-time split into inequivalent
subsets of operational prescriptions under the presence of a gravitational
field or when the observer is not inertial. We deal with the Hole Argument by
resorting to de idea of the QMC and show how it is the metric field that
supplies the physical meaning of coordinates and individuates point-events in
regions of space-time where no other fields exist. Because of that the GCP has
also value as a guiding principle supporting Einstein's appreciation of its
heuristic worth in his reply to Kretschmann in 1918
The issue of Dark Energy in String Theory
Recent astrophysical observations, pertaining to either high-redshift
supernovae or cosmic microwave background temperature fluctuations, as those
measured recently by the WMAP satellite, provide us with data of unprecedented
accuracy, pointing towards two (related) facts: (i) our Universe is accelerated
at present, and (ii) more than 70 % of its energy content consists of an
unknown substance, termed dark energy, which is believed responsible for its
current acceleration. Both of these facts are a challenge to String theory. In
this review I outline briefly the challenges, the problems and possible avenues
for research towards a resolution of the Dark Energy issue in string theory.Comment: Based on Invited lecture at the ``Third Aegean Summer School on: The
Invisible Universe: Dark matter and Dark energy'', Karfas, Chios Island
(Greece) September 26-October 1 200
Gauges and Cosmological Backreaction
We present a formalism for spatial averaging in cosmology applicable to
general spacetimes and coordinates, and allowing the easy incorporation of a
wide variety of matter sources. We apply this formalism to a
Friedmann-LeMaitre-Robertson-Walker universe perturbed to second-order and
present the corrections to the background in an unfixed gauge. We then present
the corrections that arise in uniform curvature and conformal Newtonian gauges.Comment: 13 pages. Updated: reference added, typos corrected, exposition
clarified. Version 3: Replaced with version published by JCA
- …
