14 research outputs found
Functional Morphometric Analysis of the Furcula in Mesozoic Birds
The furcula displays enormous morphological and structural diversity. Acting as an important origin for flight muscles involved in the downstroke, the form of this element has been shown to vary with flight mode. This study seeks to clarify the strength of this form-function relationship through the use of eigenshape morphometric analysis coupled with recently developed phylogenetic comparative methods (PCMs), including phylogenetic Flexible Discriminant Analysis (pFDA). Additionally, the morphospace derived from the furculae of extant birds is used to shed light on possible flight adaptations of Mesozoic fossil taxa. While broad conclusions of earlier work are supported (U-shaped furculae are associated with soaring, strong anteroposterior curvature with wing-propelled diving), correlations between form and function do not appear to be so clear-cut, likely due to the significantly larger dataset and wider spectrum of flight modes sampled here. Interclavicular angle is an even more powerful discriminator of flight mode than curvature, and is positively correlated with body size. With the exception of the close relatives of modern birds, the ornithuromorphs, Mesozoic taxa tend to occupy unique regions of morphospace, and thus may have either evolved unfamiliar flight styles or have arrived at similar styles through divergent musculoskeletal configurations
Phylogenetic Analysis of Pelecaniformes (Aves) Based on Osteological Data: Implications for Waterbird Phylogeny and Fossil Calibration Studies
) were also assessed. The antiquity of these taxa and their purported status as stem members of extant families makes them valuable for studies of higher-level avian diversification. (sister taxon to Phalacrocoracidae). These relationships are invariant when ‘backbone’ constraints based on recent avian phylogenies are imposed.Relationships of extant pelecaniforms inferred from morphology are more congruent with molecular phylogenies than previously assumed, though notable conflicts remain. The phylogenetic position of the Plotopteridae implies that wing-propelled diving evolved independently in plotopterids and penguins, representing a remarkable case of convergent evolution. Despite robust support for the placement of fossil taxa representing key calibration points, the successive outgroup relationships of several “stem fossil + crown family” clades are variable and poorly supported across recent studies of avian phylogeny. Thus, the impact these fossils have on inferred patterns of temporal diversification depends heavily on the resolution of deep nodes in avian phylogeny
Microstructure and Cross-Sectional Shape of Limb Bones in Great Horned Owls and Red-Tailed Hawks: How Do These Features Relate to Differences in Flight and Hunting Behavior?
A Quantitative and Comparative Analysis of the Muscle Architecture of the Forelimb Myology of Diurnal Birds of Prey (Order Accipitriformes and Falconiformes)
Flight is a key feature in the evolution of birds. Wing anatomy reflects many aspects of avian biology such as flight ability. However, our knowledge of the flight musculature has many gaps still, particularly for the distal wing. Therefore, the aim of this work was to investigate the form-function relationship of the forelimb myology of birds to understand the role of individual muscles during flight. Dissections of six species of birds of prey were performed to collect numerical data of muscle architecture, which is the primary determinant of muscle function and force-generation capacity. Birds of prey are a highly diverse group that presents different flight styles throughout the taxa, making them a good model for our purposes. Wing muscle mass (MM) isometrically scaled with body mass1.035 , muscle length to MM0.343 , and fascicle length (FL) scaled allometrically to MM0.285 . The shoulder musculature scaled differently than the other regions where the FL increases more slowly than would be expected in geometrically similar animals, which affects flight mechanics. A proximal-to-distal reduction of MM occurs, which helps to minimize the wing moment of inertia during flight while allowing precise control of the distal wing. Interestingly, the distribution of MM appeared to be species-specific, suggesting a functional signal. This study provides numerical information of muscle architecture of the avian wing that helps us to understand muscle function and its implication in flight, and can be used in future studies of flight mechanics
A Quantitative and Comparative Analysis of the Muscle Architecture of the Forelimb Myology of Diurnal Birds of Prey (Order Accipitriformes and Falconiformes)
Ecology and Caudal Skeletal Morphology in Birds: The Convergent Evolution of Pygostyle Shape in Underwater Foraging Taxa
Wing bone geometry reveals active flight in Archaeopteryx
International audienceArchaeopteryx is an iconic fossil taxon with feathered wings from the Late Jurassic of Germany that occupies a crucial position for understanding the early evolution of avian flight. After over 150 years of study, its mosaic anatomy unifying characters of both non-flying dinosaurs and flying birds has remained challenging to interpret in a locomotory context. Here, we compare new data from three Archaeopteryx specimens obtained through phase-contrast synchrotron microtomography to a representative sample of archosaurs employing a diverse array of locomotory strategies. Our analyses reveal that the architecture of Archaeopteryx's wing bones consistently exhibits a combination of cross-sectional geometric properties uniquely shared with volant birds, particularly those occasionally utilising short-distance flapping. We therefore interpret that Archaeopteryx actively employed wing flapping to take to the air through a more anterodorsally posteroventrally oriented flight stroke than used by modern birds. This unexpected outcome implies that avian powered flight must have originated before the latest Jurassic
