339 research outputs found
Molecular Gas in the Host Galaxy of a Quasar at Redshift z=6.42
Observations of the molecular gas phase in quasar host galaxies provide
fundamental constraints on galaxy evolution at the highest redshifts. Molecular
gas is the material out of which stars form; it can be traced by spectral line
emission of carbon--monoxide (CO). To date, CO emission has been detected in
more than a dozen quasar host galaxies with redshifts (z) larger 2, the record
holder being at z=4.69. At these distances the CO lines are shifted to longer
wavelengths, enabling their observation with sensitive radio and millimetre
interferometers. Here we present the discovery of CO emission toward the quasar
SDSS J114816.64+525150.3 (hereafter J1148+5251) at a redshift of z=6.42, when
the universe was only 1/16 of its present age. This is the first detection of
molecular gas at the end of cosmic reionization. The presence of large amounts
of molecular gas (M(H_2)=2.2e10 M_sun) in an object at this time demonstrates
that heavy element enriched molecular gas can be generated rapidly in the
earliest galaxies.Comment: 12 pages, 2 figures. To appear in Nature, July, 200
Demography and disorders of German Shepherd Dogs under primary veterinarycare in the UK
The German Shepherd Dog (GSD) has been widely used for a variety of working roles. However, concerns for the health and welfare of the GSD have been widely aired and there is evidence that breed numbers are now in decline in the UK. Accurate demographic and disorder data could assist with breeding and clinical prioritisation. The VetCompassTM Programme collects clinical data on dogs under primary veterinary care in the UK. This study included all VetCompassTM dogs under veterinary care during 2013. Demographic, mortality and clinical diagnosis data on GSDs were extracted and reported
Recommended from our members
Inferring structural connectivity using Ising couplings in models of neuronal networks
Functional connectivity metrics have been widely used to infer the underlying structural connectivity in neuronal networks. Maximum entropy based Ising models have been suggested to discount the effect of indirect interactions and give good results in inferring the true anatomical connections. However, no benchmarking is currently available to assess the performance of Ising couplings against other functional connectivity metrics in the microscopic scale of neuronal networks through a wide set of network conditions and network structures. In this paper, we study the performance of the Ising model couplings to infer the synaptic connectivity in in silico networks of neurons and compare its performance against partial and cross-correlations for different correlation levels, firing rates, network sizes, network densities, and topologies. Our results show that the relative performance amongst the three functional connectivity metrics depends primarily on the network correlation levels. Ising couplings detected the most structural links at very weak network correlation levels, and partial correlations outperformed Ising couplings and cross-correlations at strong correlation levels. The result was consistent across varying firing rates, network sizes, and topologies. The findings of this paper serve as a guide in choosing the right functional connectivity tool to reconstruct the structural connectivity
Border Terriers under primary veterinary care in England: demography and disorders
The Border Terrier is a working terrier type that is generally considered to be a relatively healthy and hardy breed. This study aimed to characterise the demography and common disorders of Border Terriers receiving veterinary care in England using de-identified electronic patient record data within the VetCompass™ Programme
Relevance of large litter bag burial for the study of leaf breakdown in the hyporheic zone
Particulate organic matter is the major source of energy for most low-order streams, but a large part of this litter is buried within bed sediment during floods and thus become poorly available for benthic food webs. The fate of this buried litter is little studied. In most cases, measures of breakdown rates consist of burying a known mass of litter within the stream sediment and following its breakdown over time. We tested this method using large litter bags (15 x 15 cm) and two field experiments. First, we used litter large bags filled with Alnus glutinosa leaves (buried at 20 cm depth with a shovel) in six stations within different land-use contexts and with different sediment grain sizes. Breakdown rates were surprisingly high (0.0011–0.0188 day-1) and neither correlate with most of the physico-chemical characteristics measured in the interstitial habitats nor with the land-use around the stream. In contrast, the rates were negatively correlated with a decrease in oxygen concentrations between surface and buried bags and positively correlated with both the percentage of coarse particles (20–40 mm) in the sediment and benthic macro-invertebrate richness. These results suggest that the vertical exchanges with surface water in the hyporheic zone play a crucial role in litter breakdown. Second, an experimental modification of local sediment (removing fine particles with a shovel to increase vertical exchanges) highlighted the influence of grain size on water and oxygen exchanges, but had no effect on hyporheic breakdown rates. Burying large litter bags within sediments may thus not be a relevant method, especially in clogged conditions, due to changes induced through the burial process in the vertical connectivity between surface and interstitial habitats that modify organic matter processing
The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia.
RATIONALE: The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES: This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS: The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS: The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION: This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.This work was supported by the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). The authors thank Charlotte Oomen for valuable comments on the manuscript.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00213-015-4007-
Photodissociation dynamics of methyl iodide probed using femtosecond extreme ultraviolet photoelectron spectroscopy
Femtosecond pump-probe photoelectron spectroscopy measurements using an extreme ultraviolet probe have been made on the photodissociation dynamics of UV (269 nm) excited CH3I. The UV excitation leads to population of the 3Q0 state which rapidly dissociates. The dissociation is manifested as shifts in the measured photoelectron kinetic energy that map the extending C-I bond. The increased energy available in the XUV probe relative to a UV probe means the dynamics are followed over the chemically important region as far as C-I bond lengths of approximately 4 Å
Molecular gas and dust around a radio-quiet quasar at redshift 4.69.
Galaxies are believed to have formed a large proportion of their stars in giant bursts of star formation early in their lives, but when and how this took place are still very uncertain. The presence of large amounts of dust in quasars and radio galaxies at redshifts z > 4 shows that some synthesis of heavy elements had already occurred at this time. This implies that molecular gas--the building material of stars--should also be present, as it is in galaxies at lower redshifts (z approximately = 2.5, refs 7-10). Here we report the detection of emission from dust and carbon monoxide in the radio-quiet quasar BR1202 - 0725, at redshift z = 4.69. Maps of these emissions reveal two objects, separated by a few arc seconds, which could indicated either the presence of a companion to the quasar or gravitational lensing of the quasar itself. Regardless of the precise interpretation of the maps, the detection of carbon monoxide confirms the presence of a large mass of molecular gas in one of the most distant galaxies known, and shows that conditions conducive to huge bursts of star formation existed in the very early Universe
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Localization and Broadband Follow-Up of the Gravitational-Wave Transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser InterferometerGravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimatesof the time, significance, and sky location of the event were shared with 63 teams of observers covering radio,optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter wedescribe the low-latency analysis of the GW data and present the sky localization of the first observed compactbinary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-rayCoordinates Network circulars, giving an overview of the participating facilities, the GW sky localizationcoverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger,there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadbandcampaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broadcapabilities of the transient astronomy community and the observing strategies that have been developed to pursueneutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-upcampaign are being disseminated in papers by the individual teams
- …
